Gravitation

Le laboratoire AstroParticule et Cosmologie (APC) ouvre ses portes aux futur·e·s doctorant·e·s. Les sujets de thèse pour 2026, portés par les équipes de recherche du laboratoire, sont désormais disponibles ici et couvrent un large spectre de thématiques associées à la physique des deux infinis : astrophysique des hautes énergies, cosmologie, physique des particules, ondes gravitationnelles et physique théorique. Les candidat·e·s intéressé·e·s sont invité·e·s à prendre contact avec la personne référente indiquée pour chaque proposition.

Le 3 décembre 2025, le Laboratoire Astroparticule & Cosmologie a accueilli une délégation polonaise dirigée par Prof. Andrzej Szeptycki, sous-secrétaire d’État au ministère polonais des Sciences et de l’Enseignement supérieur. Cette visite s’inscrivait dans le cadre du 8e Forum franco-polonais pour la science et l’innovation. Elle intervient à un moment charnière : la signature d’un accord entre le CNRS et l’Académie des Sciences de Pologne, visant à renforcer le partenariat entre l’APC et le futur International Institute for Particle Astrophysics (AstroCeNT).
LISA (Laser Interferometer Space Antenna) is a low-frequency gravitational wave observatory (0.1 mHz - 1 Hz) that will be launched by the ESA in 2035. It aims to observe several populations of relativistic binary stars: white dwarf binaries in our Galaxy, supermassive black holes in coalescence, stellar-mass black holes captured by supermassive black holes in galactic nuclei, etc. In addition, we hope to observe stochastic gravitational wave signals from the early Universe. Due to the dominant seismic noise at these frequencies, these sources cannot be observed by ground-based detectors. The observation of these sources will provide unique information about the history of the early Universe, the formation of large structures, the verification of the theory of general relativity, and perhaps the nature of dark matter. We expect to detect thousands to tens of thousands of sources during the lifetime of the mission, with signals overlapping in time and frequency. In addition, we expect gaps in the data and artefacts from the instrument and the environment (e.g., the impact of micrometeorites or asteroid flybys). We must detect all these sources and characterise them simultaneously: this problem is often referred to as ‘global fit’ and is the main subject of doctoral theses.
Accelerating stellar evolution models with neural networks, and application to the formation and evolution of astrophysical sources detected by LIGO/Virgo

Massive Stars Live in Pairs… Two major revolutions have transformed our understanding of stellar evolution. The first was the realization that most massive stars (over 75%) evolve within binary systems (Sana et al., 2012).

   Merging massive black hole binaries (MBHBs) are important gravitational wave (GW) sources for the future space-based observatory LISA. The GW signal from the merger will be detected throughout the entire Universe. Characterization of the GW signal allows us to infer masses and spins of MBHs, the position of the source in the sky and the distance.  This information will allow us to understand the mechanism of MBHs formation and their evolution through cosmic history. 
LISA -- Laser Interferometer Space Antenna -- will be launched in 2035 and will observe gravitational wave (GW) sources in the frequency range 0.1-100 mHz. Extreme mass ratio inspirals (EMRIs) are one of the prime sources for LISA. As a result of N-body interaction of stellar remnants in the galactic nuclei, a compact object, (CO), (a stellar mass black hole or a neutron star) could be thrown into a very eccentric orbit passing near a massive black hole (MBH).

The LISA project of gravitational waves detection has been selected in January 2024 by the European Space Agency as the third ‘Large’ mission of the ‘Cosmic Vision’ program, with a expected launch date in 2035. This mission relies on the capability to measure, using laser interferometry, the distance fluctuations between satellites 2.5 Mkm apart, with a picometer accuracy on seconds to hours timescales.