Cosmologie

This PhD project aims to develop a robust, unified data analysis pipeline for Cosmic Microwave Background (CMB) polarization experiments—starting from raw time-ordered data (TOD) and extending to cosmological parameter inference. Built upon the tools and frameworks developed in the ERC SciPol project (e.g. FURAX, MegaTop), the work will model complex systematics such as instrumental noise, beam mismatches, and foregrounds. In the later stages, the project may explore Simulation-Based Inference (SBI) techniques to bypass traditional likelihood approximations, enabling direct inference of cosmological parameters (e.g. tensor-to-scalar ratio r, birefringence angle) from forward simulations. The PhD will combine high-performance simulation, probabilistic modeling (using JAX), and CMB pipeline development, in collaboration with the SciPol, Simons Observatory, and LiteBIRD teams.

Deep Learning techniques have revolutionized artificial intelligence. Their application to astrophysics and cosmology permits us to analyze the large quantity of data obtained with current surveys and expected from future surveys with the aim of improving our understanding of the cosmological model.

Machine Learning techniques have revolutionized artificial intelligence. Their application to astrophysics and cosmology permits us to analyze the large quantity of data obtained with current surveys and expected from future surveys with the aim of improving our understanding of the cosmological model.

The APC Laboratory mourns the loss of George Smoot, who passed away unexpectedly at his home in Paris. George Smoot was one of the pioneers of observations of the cosmic microwave background (CMB), which revolutionized our understanding of the cosmos and placed cosmology on a firm experimental footing. (Credits photo: Peter Badge/Lindau Nobel Laureate Meetings)

Ce stage offre une initiation aux techniques d'analyse des données astrophysiques liées au fond diffus cosmologique (CMB). Il permettra à l’étudiant.e de se familiariser avec les méthodes utilisées pour explorer et interpréter les informations contenues dans ces observations provenant de l'Univers primordial. Le projet se concentrera en particulier sur l’optimisation des techniques dites de séparation de composantes, qui distinguent le CMB des contaminations galactiques.

Dans le cadre de la préparation des données du télescope LSST de l’observatoire Vera C. Rubin qui fear sa première lumière en 2025, l’un des défis majeurs est le deblending des galaxies, c’est-à-dire la séparation des contributions lumineuses de galaxies superposées dans les images astronomiques.