Séminaire

I will present a bit more extended version of the talk that I gave recently at the TAUP2021 conference, with overview of the recent developments in the multi-messenger astronomy.
Black holes (BHs) cover a wide range of mass: from the stellar BH binaries detected with LIGO / Virgo to the massive BHs residing at the center of galaxies. Both these populations will be detectable in future by LISA at low-frequency. In this talk, I will provide a general overview of the current detections from LIGO / Virgo, describing the current state-of-the-art and I will highlight the potential of the LISA mission.
The dawn of gravitational wave (GW) astronomy has enabled new probes of dark matter. In particular, the formation and abundance of primordial black holes (PBHs) can be probed through GWs. In this talk I will discuss different ways how GW observations can be used to probe PBHs and I will review the implications of LIGO-Virgo observations on PBHs.

Dear Colleagues,

  with this email we would like to remind you on the upcoming kick-off meeting on 18th June for ECFA workshops on an e+e- Higgs / top / electroweak factory. More information is given in the email below.

Meanwhile the speakers at the kick-off meeting have been defined by the Working Group conveners. The agenda is available here:  https://indico.cern.ch/event/1033941/
The Glashow resonance describes the resonant formation of an on-mass W- boson via the scattering of an electron antineutrino and an electron, a process first predicted in 1959. In the electron rest frame, the requisite neutrino energy of 6.3 PeV lies beyond the reach of terrestrial accelerators. However, the discovery of a diffuse flux of astrophysical neutrinos by IceCube gave rise to the possibility of detecting the resonance via high-energy (anti)neutrinos from outer space.
Gravitational waves (GW) can be used to probe various epochs in the early Universe. In this talk I will discuss about the production of Gravitational waves in a particular model of inflationary magnetogenesis. In this model, we require a low energy scale for inflation and reheating (reheating temperature, TR < 104 GeV) and have a blue spectrum of electromagnetic (EM) field which peaks around the horizon scale of reheating.

Abstract: While the Sun has already proved a fruitful laboratory for neutrino physics, high-energy solar neutrinos may continue to provide insight. For example, current-generation neutrino telescopes have searched for an excess of neutrinos from the Sun’s direction as evidence of annihilating weakly interacting massive particles (WIMPs) at energies from ~0.1 GeV to 10^4 GeV. Detection of these neutrinos would be a smoking-gun signature of WIMPs since backgrounds from the Sun are well-understood.

Among the sources which the Laser Interferometer Space Antenna (LISA) will observe are the signals from Massive Black Hole Binaries during their inspiral, merger and ring-down phases. To estimate physical parameters of these systems and their localisations, one has to perform some form of Bayesian Inference. The most common approach to do it is through defining a likelihood function and producing posterior samples with some form of sampling technique. The disadvantage of such sampling methods is that they are slow.