Séminaire

Wormholes are exotic solutions of General Relativity that still challenge our physical intuition. In this talk I will first review and distinguish various types of wormholes along with their expected physical properties. I will then focus on asymptotically AdS wormhole solutions in the context of holography. I will explain how to compute correlation functions of local operators as well as non local observables such as correlation functions of Wilson loops on the distinct boundaries and discuss their behavior.
Nowadays the leading contender to understand the initial conditions of the Big Bang is inflation, which predicts the existence of a primordial background of gravitational waves that must have left its imprint in the CMB polarization: the so-called ​ B-modes. The main difficulty in measuring the ​ B-modes comes not just from its sheer faintness but from the fact that many other objects in the universe also emit polarized microwaves.
Universality of free fall, famously depicted by Galileo's letting down various masses from the top of Pisa's tower, is a cornerstone of General Relativity to the extent that any alternative theory of gravity would almost certainly break that principle. This is why it is being tested by ever more sensitive experiments in the Solar system, such as the recent Microscope satellite.
Theoretical models that aim to solve the tension between local measurements of the Hubble constant H0 and its inference from CMB data  have to include a modification to the standard LCDM model around the time of matter-radiation equality. I propose that such an early-time modification consists in a scalar field non-minimally coupled to the Ricci scalar, which behaves effectively like a dark radiation component and induces a time evolution of the Newton constant G.
MicroBooNE is a Liquid Argon Time Projection Chamber (LArTPC) neutrino experiment on the Booster Neutrino Beamline at the Fermi National Accelerator Laboratory, with an 85-tonne active mass.
One of MicroBooNE’s primary physics goals is to investigate the excess of electron neutrino events seen by MiniBooNE in the [200-600] MeV range.
MicroBooNE will constrain the intrinsic electron neutrino component of the beam by measuring the muon neutrino spectrum.
Our low-energy excess analysis makes use of deep learning algorithms applied to the high-resolution images provided by the MicroBooNE LAr