Séminaire

In 2034 the Laser Interferometer Space Antenna (LISA) will detect the coalescence of massive black hole binaries (MBHBs) from 10^5 to 10^7 solar mass up to z~10. The gravitational wave (GWs) signal is expected to be accompanied by a powerful electromagnetic (EM) counterpart, from radio to X-ray, generated by the gas accreting on the binary.
In this talk I'll give recent news from workshop on Cosmic Rays and Neutrinos which was organised in APC and UCLouvain. I'll show several new experimental and theoretical results presented at this workshop 
 from the fields of  high energy neutrinos, gamma-ray astronomy and cosmic rays.
 
Two aspects of Positive Operator Valued Measures (POVM) on the Euclidean plane (a basic Hilbert space!) are presented, namely their status as quantum observables and their role as quantizers in the integral quantization procedure. The compatibility of POVMs in the ensuing quantum formalism is discussed, and a Naimark dilation is found for the quantum operators. The relation with Toeplitz quantization is explained. Within this framework, we describe the linear polarization of the light with the use of Stokes parameters and its interaction with a polariser as a quantum measurement (Malus’ law).
Gravity can be embedded into a renormalizable theory by means of adding quadratic in curvature terms. 
However, this at first leads to the presence of the Weyl ghost. It is possible to get rid of this ghost if the 
locality assumption is weakened and the propagator of the graviton is represented by an entire function 
of the d'Alembertian operator without new poles and zeros. Models of this type admit a cosmological 
solution describing the R^2, or Starobinsky, inflation. We study graviton production after inflation in 
The new weak lensing measurements from the first three years of observation by the Dark Energy Survey offer a unique opportunity to constrain deviations from General Relativity, our theory of gravity. Weak gravitational lensing is indeed a powerful probe of the growth of structures. As such it offers a window on the laws of gravity on cosmological scales. We thus used DES Year 3 weak lensing data to test the validity of General Relativity (GR) to a new regime, and explore modifications to GR as an alternative to dark energy.
We consider the massless minimally coupled scalar field in the de Sitter ambient space formalism as a gauge potential or connection field. We construct the scalar gauge theory by helping an arbitrary constant five-vector field B analogous to the standard gauge theory. The Lagrangian density of the interaction between the scalar and spinor fields is presented in this framework. The Yukawa potential can be extracted from this Lagrangian density at the null curvature limit by an appropriate choice of a constant five-vector field.
After an introduction on recent efforts in extracting information about the early Universe from galaxy clustering surveys and on the "Boostless Cosmological Bootstrap" program, I review recent results and developments in this program, especially in light of recent measurements of the four-point function of BOSS galaxies.
Dear all,

On Monday, October 17 at 10.00 we will be welcoming Rachel Gray (Queen Mary University of London) for the gravitation group seminar. The seminar will take place online - the zoom link can be found below.

Rachel will talk about cosmological constraints from gravitational wave dark sirens and galaxy catalogs. 

Title: 
Cosmology with Dark Sirens and Galaxy Catalogues

Abstract: 
Multi-messenger data of high energy neutrinos by IceCube and  gamma-rays by Tibet AS-gamma show new signal at 100 TeV energies outside of Galactic plane but below 20 degrees from it. This mysterious signal challenge conventional cosmic ray models, which predict major Galactic signal from Galactic plane and no significant flux at high galactic latitudes, as seen at GeV energies by Fermi LAT telescope.

Here we show that main assumption of continues distribution of cosmic rays in Galaxy is broken at PeV energies.