Geant4-11
Public Member Functions | Protected Member Functions | Protected Attributes | Private Attributes
G4ParticleHPFissionFS Class Reference

#include <G4ParticleHPFissionFS.hh>

Inheritance diagram for G4ParticleHPFissionFS:
G4ParticleHPFinalState

Public Member Functions

G4HadFinalStateApplyYourself (const G4HadProjectile &theTrack)
 
 G4ParticleHPFissionFS ()
 
G4double GetA ()
 
G4int GetM ()
 
G4double GetN ()
 
virtual G4ParticleHPVectorGetXsec ()
 
virtual G4double GetXsec (G4double)
 
G4double GetZ ()
 
G4bool HasAnyData ()
 
G4bool HasFSData ()
 
G4bool HasXsec ()
 
void Init (G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *)
 
void Init (G4double A, G4double Z, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
 
G4ParticleHPFinalStateNew ()
 
void SetA_Z (G4double anA, G4double aZ, G4int aM=0)
 
void SetAZMs (G4double anA, G4double aZ, G4int aM, G4ParticleHPDataUsed used)
 
void SetProjectile (G4ParticleDefinition *projectile)
 
 ~G4ParticleHPFissionFS ()
 

Protected Member Functions

void adjust_final_state (G4LorentzVector)
 

Protected Attributes

G4bool hasAnyData
 
G4bool hasFSData
 
G4bool hasXsec
 
G4int secID
 
G4double theBaseA
 
G4int theBaseM
 
G4double theBaseZ
 
G4ParticleHPNames theNames
 
G4int theNDLDataA
 
G4int theNDLDataM
 
G4int theNDLDataZ
 
G4ParticleDefinitiontheProjectile
 
G4Cache< G4HadFinalState * > theResult
 

Private Attributes

G4bool produceFissionFragments
 
G4ParticleHPFCFissionFS theFC
 
G4ParticleHPFFFissionFS theFF
 
G4ParticleHPFSFissionFS theFS
 
G4ParticleHPLCFissionFS theLC
 
G4ParticleHPSCFissionFS theSC
 
G4ParticleHPTCFissionFS theTC
 

Detailed Description

Definition at line 46 of file G4ParticleHPFissionFS.hh.

Constructor & Destructor Documentation

◆ G4ParticleHPFissionFS()

G4ParticleHPFissionFS::G4ParticleHPFissionFS ( )

◆ ~G4ParticleHPFissionFS()

G4ParticleHPFissionFS::~G4ParticleHPFissionFS ( )
inline

Definition at line 51 of file G4ParticleHPFissionFS.hh.

51{}

Member Function Documentation

◆ adjust_final_state()

void G4ParticleHPFinalState::adjust_final_state ( G4LorentzVector  init_4p_lab)
protectedinherited

Definition at line 47 of file G4ParticleHPFinalState.cc.

48{
49
50 G4double minimum_energy = 1*keV;
51
52 if ( G4ParticleHPManager::GetInstance()->GetDoNotAdjustFinalState() ) return;
53
54 G4int nSecondaries = theResult.Get()->GetNumberOfSecondaries();
55
56 G4int sum_Z = 0;
57 G4int sum_A = 0;
58 G4int max_SecZ = 0;
59 G4int max_SecA = 0;
60 G4int imaxA = -1;
61 for ( int i = 0 ; i < nSecondaries ; i++ )
62 {
63 //G4cout << "G4ParticleHPFinalState::adjust_final_state theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName() = " << theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName() << G4endl;
65 max_SecZ = std::max ( max_SecZ , theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicNumber() );
67 max_SecA = std::max ( max_SecA , theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass() );
68 if ( theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass() == max_SecA ) imaxA = i;
69#ifdef G4PHPDEBUG
70 if( std::getenv("G4ParticleHPDebug")) G4cout << "G4ParticleHPFinalState::adjust_final_stat SECO " << i << " " <<theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName() << G4endl;
71#endif
72
73 }
74
75 G4ParticleDefinition* resi_pd = 0;
76
77 G4double baseZNew = theBaseZ;
78 G4double baseANew = theBaseA;
80 baseANew ++;
81 } else if( theProjectile == G4Proton::Proton() ) {
82 baseZNew ++;
83 baseANew ++;
84 } else if( theProjectile == G4Deuteron::Deuteron() ) {
85 baseZNew ++;
86 baseANew += 2;
87 } else if( theProjectile == G4Triton::Triton() ) {
88 baseZNew ++;
89 baseANew += 3;
90 } else if( theProjectile == G4He3::He3() ) {
91 baseZNew += 2;
92 baseANew += 3;
93 } else if( theProjectile == G4Alpha::Alpha() ) {
94 baseZNew += 2;
95 baseANew += 4;
96 }
97
98#ifdef G4PHPDEBUG
99 if( std::getenv("G4ParticleHPDebug")) G4cout << "G4ParticleHPFinalState::adjust_final_stat BaseZ " << baseZNew << " BaseA " << baseANew << " sum_Z " << sum_Z << " sum_A " << sum_A << G4endl;
100#endif
101
102 G4bool needOneMoreSec = false;
103 G4ParticleDefinition* oneMoreSec_pd = 0;
104 if ( (int)(baseZNew - sum_Z) == 0 && (int)(baseANew - sum_A) == 0 )
105 {
106 //All secondaries are already created;
107 resi_pd = theResult.Get()->GetSecondary( imaxA )->GetParticle()->GetDefinition();
108 }
109 else
110 {
111 if ( max_SecA >= int(baseANew - sum_A) )
112 {
113 //Most heavy secondary is interpreted as residual
114 resi_pd = theResult.Get()->GetSecondary( imaxA )->GetParticle()->GetDefinition();
115 needOneMoreSec = true;
116 }
117 else
118 {
119 //creation of residual is requierd
120 resi_pd = G4IonTable::GetIonTable()->GetIon ( int(baseZNew - sum_Z) , (int)(baseANew - sum_A) , 0.0 );
121 }
122
123 if ( needOneMoreSec )
124 {
125 if ( int(baseZNew - sum_Z) == 0 && (int)(baseANew - sum_A) > 0 )
126 {
127 //In this case, one neutron is added to secondaries
128 if ( int(baseANew - sum_A) > 1 ) G4cout << "More than one neutron is required for the balance of baryon number!" << G4endl;
129 oneMoreSec_pd = G4Neutron::Neutron();
130 }
131 else
132 {
133#ifdef G4PHPDEBUG
134 if( std::getenv("G4ParticleHPDebug")) G4cout << this << "G4ParticleHPFinalState oneMoreSec_pd Z " << baseZNew << " - " << sum_Z << " A " << baseANew << " - " << sum_A << " projectile " << theProjectile->GetParticleName() << G4endl;
135#endif
136 oneMoreSec_pd = G4IonTable::GetIonTable()->GetIon ( int(baseZNew - sum_Z) , (int)(baseANew - sum_A) , 0.0 );
137 if( !oneMoreSec_pd ) {
138 G4cerr << this << "G4ParticleHPFinalState oneMoreSec_pd Z " << baseZNew << " - " << sum_Z << " A " << baseANew << " - " << sum_A << " projectile " << theProjectile->GetParticleName() << G4endl;
139 G4Exception("G4ParticleHPFinalState:adjust_final_state",
140 "Warning",
142 "No adjustment will be done!");
143 return;
144 }
145 }
146 }
147
148 if ( resi_pd == 0 )
149 {
150 // theNDLDataZ,A has the Z and A of used NDL file
151 G4double ndlZNew = theNDLDataZ;
152 G4double ndlANew = theNDLDataA;
154 ndlANew ++;
155 } else if( theProjectile == G4Proton::Proton() ) {
156 ndlZNew ++;
157 ndlANew ++;
158 } else if( theProjectile == G4Deuteron::Deuteron() ) {
159 ndlZNew ++;
160 ndlANew += 2;
161 } else if( theProjectile == G4Triton::Triton() ) {
162 ndlZNew ++;
163 ndlANew += 3;
164 } else if( theProjectile == G4He3::He3() ) {
165 ndlZNew += 2;
166 ndlANew += 3;
167 } else if( theProjectile == G4Alpha::Alpha() ) {
168 ndlZNew += 2;
169 ndlANew += 4;
170 }
171 // theNDLDataZ,A has the Z and A of used NDL file
172 if ( (int)(ndlZNew - sum_Z) == 0 && (int)(ndlANew - sum_A) == 0 )
173 {
174 G4int dif_Z = ( int ) ( theNDLDataZ - theBaseZ );
175 G4int dif_A = ( int ) ( theNDLDataA - theBaseA );
176 resi_pd = G4IonTable::GetIonTable()->GetIon ( max_SecZ - dif_Z , max_SecA - dif_A , 0.0 );
177 if( !resi_pd ) {
178 G4cerr << "G4ParticleHPFinalState resi_pd Z " << max_SecZ << " - " << dif_Z << " A " << max_SecA << " - " << dif_A << " projectile " << theProjectile->GetParticleName() << G4endl;
179 G4Exception("G4ParticleHPFinalState:adjust_final_state",
180 "Warning",
182 "No adjustment will be done!");
183 return;
184 }
185
186 for ( int i = 0 ; i < nSecondaries ; i++ )
187 {
188 if ( theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicNumber() == max_SecZ
189 && theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass() == max_SecA )
190 {
192 p = p * resi_pd->GetPDGMass()/ G4IonTable::GetIonTable()->GetIon ( max_SecZ , max_SecA , 0.0 )->GetPDGMass();
193 theResult.Get()->GetSecondary( i )->GetParticle()->SetDefinition( resi_pd );
195 }
196 }
197 }
198 }
199 }
200
201
202 G4LorentzVector secs_4p_lab( 0.0 );
203
205 G4double fast = 0;
206 G4double slow = 1;
207 G4int ifast = 0;
208 G4int islow = 0;
209 G4int ires = -1;
210
211 for ( G4int i = 0 ; i < n_sec ; i++ )
212 {
213
214 //G4cout << "HP_DB " << i
215 // << " " << theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName()
216 // << " 4p " << theResult.GetSecondary( i )->GetParticle()->Get4Momentum()
217 // << " ke " << theResult.GetSecondary( i )->GetParticle()->Get4Momentum().e() - theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetPDGMass()
218 // << G4endl;
219
220 secs_4p_lab += theResult.Get()->GetSecondary( i )->GetParticle()->Get4Momentum();
221
222 G4double beta = 0;
224 {
226 }
227 else
228 {
229 beta = 1;
230 }
231
232 if ( theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition() == resi_pd ) ires = i;
233
234 if ( slow > beta && beta != 0 )
235 {
236 slow = beta;
237 islow = i;
238 }
239
240 if ( fast <= beta )
241 {
242 if ( fast != 1 )
243 {
244 fast = beta;
245 ifast = i;
246 }
247 else
248 {
249// fast is already photon then check E
251 if ( e > theResult.Get()->GetSecondary( ifast )->GetParticle()->Get4Momentum().e() )
252 {
253// among photons, the highest E becomes the fastest
254 ifast = i;
255 }
256 }
257 }
258 }
259
260
261 G4LorentzVector dif_4p = init_4p_lab - secs_4p_lab;
262
263 //G4cout << "HP_DB dif_4p " << init_4p_lab - secs_4p_lab << G4endl;
264 //G4cout << "HP_DB dif_3p mag " << ( dif_4p.v() ).mag() << G4endl;
265 //G4cout << "HP_DB dif_e " << dif_4p.e() - ( dif_4p.v() ).mag()<< G4endl;
266
267 G4LorentzVector p4(0);
268 if ( ires == -1 )
269 {
270// Create and Add Residual Nucleus
271 ires = nSecondaries;
272 nSecondaries += 1;
273
274 G4DynamicParticle* res = new G4DynamicParticle ( resi_pd , dif_4p.v() );
275 theResult.Get()->AddSecondary ( res, secID );
276
277 p4 = res->Get4Momentum();
278 if ( slow > p4.beta() )
279 {
280 slow = p4.beta();
281 islow = ires;
282 }
283 dif_4p = init_4p_lab - ( secs_4p_lab + p4 );
284 }
285
286 if ( needOneMoreSec && oneMoreSec_pd)
287 //
288 // fca: this is not a fix, this is a crash avoidance...
289 // fca: the baryon number is still wrong, most probably because it
290 // fca: should have been decreased, but since we could not create a particle
291 // fca: we just do not add it
292 //
293 {
294 nSecondaries += 1;
295 G4DynamicParticle* one = new G4DynamicParticle ( oneMoreSec_pd , dif_4p.v() );
296 theResult.Get()->AddSecondary ( one, secID );
297 p4 = one->Get4Momentum();
298 if ( slow > p4.beta() )
299 {
300 slow = p4.beta();
301 islow = nSecondaries-1; //Because the first is 0th, so the last becomes "nSecondaries-1"
302 }
303 dif_4p = init_4p_lab - ( secs_4p_lab + p4 );
304 }
305
306 //Which is bigger dif_p or dif_e
307
308 if ( dif_4p.v().mag() < std::abs( dif_4p.e() ) )
309 {
310
311 // Adjust p
312 //if ( dif_4p.v().mag() < 1*MeV )
313 if ( minimum_energy < dif_4p.v().mag() && dif_4p.v().mag() < 1*MeV )
314 {
315
316 nSecondaries += 1;
317 theResult.Get()->AddSecondary ( new G4DynamicParticle ( G4Gamma::Gamma() , dif_4p.v() ), secID );
318
319 }
320 else
321 {
322 //G4cout << "HP_DB Difference in dif_p is too large (>1MeV) or too small(<1keV) to adjust, so that give up tuning" << G4endl;
323 }
324
325 }
326 else
327 {
328
329 // dif_p > dif_e
330 // at first momentum
331 // Move residual momentum
332
333 p4 = theResult.Get()->GetSecondary( ires )->GetParticle()->Get4Momentum();
334 theResult.Get()->GetSecondary( ires )->GetParticle()->SetMomentum( p4.v() + dif_4p.v() );
335 dif_4p = init_4p_lab - ( secs_4p_lab - p4 + theResult.Get()->GetSecondary( ires )->GetParticle()->Get4Momentum() );
336
337 //G4cout << "HP_DB new residual kinetic energy " << theResult.GetSecondary( ires )->GetParticle()->GetKineticEnergy() << G4endl;
338
339 }
340
341 G4double dif_e = dif_4p.e() - ( dif_4p.v() ).mag();
342 //G4cout << "HP_DB dif_e " << dif_e << G4endl;
343
344 if ( dif_e > 0 )
345 {
346
347// create 2 gamma
348
349 nSecondaries += 2;
350 G4double e1 = ( dif_4p.e() -dif_4p.v().mag() ) / 2;
351
352 if ( minimum_energy < e1 )
353 {
354 G4double costh = 2.*G4UniformRand()-1.;
356 G4ThreeVector dir( std::sin(std::acos(costh))*std::cos(phi),
357 std::sin(std::acos(costh))*std::sin(phi),
358 costh);
361 }
362 else
363 {
364 //G4cout << "HP_DB Difference is too small(<1keV) to adjust, so that neglect it" << G4endl;
365 }
366
367 }
368 else //dif_e < 0
369 {
370
371// At first reduce KE of the fastest secondary;
374 G4ThreeVector dir = ( theResult.Get()->GetSecondary( ifast )->GetParticle()->GetMomentum() ).unit();
375
376 //G4cout << "HP_DB ifast " << ifast << " ke0 " << ke0 << G4endl;
377
378 if ( ke0 + dif_e > 0 )
379 {
380 theResult.Get()->GetSecondary( ifast )->GetParticle()->SetKineticEnergy( ke0 + dif_e );
381 G4ThreeVector dp = p0 - theResult.Get()->GetSecondary( ifast )->GetParticle()->GetMomentum();
382
384 //theResult.GetSecondary( islow )->GetParticle()->SetMomentum( p - dif_e*dir );
385 theResult.Get()->GetSecondary( islow )->GetParticle()->SetMomentum( p + dp );
386 }
387 else
388 {
389 //G4cout << "HP_DB Difference in dif_e too large ( <0MeV ) to adjust, so that give up tuning" << G4endl;
390 }
391
392 }
393
394}
static const G4double e1[44]
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
static constexpr double twopi
Definition: G4SIunits.hh:56
static constexpr double keV
Definition: G4SIunits.hh:202
static constexpr double MeV
Definition: G4SIunits.hh:200
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double mag() const
Hep3Vector v() const
static G4Alpha * Alpha()
Definition: G4Alpha.cc:88
value_type & Get() const
Definition: G4Cache.hh:315
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:93
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void SetMomentum(const G4ThreeVector &momentum)
G4ThreeVector GetMomentum() const
void SetKineticEnergy(G4double aEnergy)
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
G4DynamicParticle * GetParticle()
static G4He3 * He3()
Definition: G4He3.cc:93
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
static G4IonTable * GetIonTable()
Definition: G4IonTable.cc:170
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4int GetAtomicNumber() const
G4int GetAtomicMass() const
const G4String & GetParticleName() const
G4ParticleDefinition * theProjectile
G4Cache< G4HadFinalState * > theResult
static G4ParticleHPManager * GetInstance()
static G4Proton * Proton()
Definition: G4Proton.cc:92
static G4Triton * Triton()
Definition: G4Triton.cc:93
T max(const T t1, const T t2)
brief Return the largest of the two arguments

References G4HadFinalState::AddSecondary(), G4Alpha::Alpha(), CLHEP::HepLorentzVector::beta(), anonymous_namespace{G4PionRadiativeDecayChannel.cc}::beta, G4Deuteron::Deuteron(), CLHEP::HepLorentzVector::e(), e1, G4cerr, G4cout, G4endl, G4Exception(), G4UniformRand, G4Gamma::Gamma(), G4Cache< VALTYPE >::Get(), G4DynamicParticle::Get4Momentum(), G4ParticleDefinition::GetAtomicMass(), G4ParticleDefinition::GetAtomicNumber(), G4DynamicParticle::GetDefinition(), G4ParticleHPManager::GetInstance(), G4IonTable::GetIon(), G4IonTable::GetIonTable(), G4DynamicParticle::GetKineticEnergy(), G4DynamicParticle::GetMomentum(), G4HadFinalState::GetNumberOfSecondaries(), G4HadSecondary::GetParticle(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGMass(), G4HadFinalState::GetSecondary(), G4He3::He3(), JustWarning, keV, CLHEP::Hep3Vector::mag(), G4INCL::Math::max(), MeV, G4Neutron::Neutron(), G4Proton::Proton(), G4ParticleHPFinalState::secID, G4DynamicParticle::SetDefinition(), G4DynamicParticle::SetKineticEnergy(), G4DynamicParticle::SetMomentum(), G4ParticleHPFinalState::theBaseA, G4ParticleHPFinalState::theBaseZ, G4ParticleHPFinalState::theNDLDataA, G4ParticleHPFinalState::theNDLDataZ, G4ParticleHPFinalState::theProjectile, G4ParticleHPFinalState::theResult, G4Triton::Triton(), twopi, and CLHEP::HepLorentzVector::v().

Referenced by G4ParticleHPInelasticBaseFS::BaseApply(), and G4ParticleHPInelasticCompFS::CompositeApply().

◆ ApplyYourself()

G4HadFinalState * G4ParticleHPFissionFS::ApplyYourself ( const G4HadProjectile theTrack)
virtual

Reimplemented from G4ParticleHPFinalState.

Definition at line 74 of file G4ParticleHPFissionFS.cc.

75 {
76
77 //Because it may change by UI command
79
80 //G4cout << "G4ParticleHPFissionFS::ApplyYourself " << G4endl;
81// prepare neutron
82
83 if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState );
84 theResult.Get()->Clear();
85 G4double eKinetic = theTrack.GetKineticEnergy();
86 const G4HadProjectile *incidentParticle = &theTrack;
87 G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
88 theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
89 theNeutron.SetKineticEnergy( eKinetic );
90
91// prepare target
92 G4Nucleus aNucleus;
93 G4ReactionProduct theTarget;
94 G4double targetMass = theFS.GetMass();
95 G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
96 theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
97 theTarget.SetDefinition( G4IonTable::GetIonTable()->GetIon( G4int(theBaseZ), G4int(theBaseA) , 0.0 ) ); //TESTPHP
98// set neutron and target in the FS classes
99 theFS.SetNeutronRP(theNeutron);
100 theFS.SetTarget(theTarget);
101 theFC.SetNeutronRP(theNeutron);
102 theFC.SetTarget(theTarget);
103 theSC.SetNeutronRP(theNeutron);
104 theSC.SetTarget(theTarget);
105 theTC.SetNeutronRP(theNeutron);
106 theTC.SetTarget(theTarget);
107 theLC.SetNeutronRP(theNeutron);
108 theLC.SetTarget(theTarget);
109
110
111 theFF.SetNeutronRP(theNeutron);
112 theFF.SetTarget(theTarget);
113
114//TKWORK 120531
115//G4cout << theTarget.GetDefinition() << G4endl; this should be NULL
116//G4cout << "Z = " << theBaseZ << ", A = " << theBaseA << ", M = " << theBaseM << G4endl;
117// theNDLDataZ,A,M should be filled in each FS (theFS, theFC, theSC, theTC, theLC and theFF)
119
120// boost to target rest system and decide on channel.
121 theNeutron.Lorentz(theNeutron, -1*theTarget);
122
123// dice the photons
124
125 G4DynamicParticleVector * thePhotons;
126 thePhotons = theFS.GetPhotons();
127
128// select the FS in charge
129
130 eKinetic = theNeutron.GetKineticEnergy();
131 G4double xSec[4];
132 xSec[0] = theFC.GetXsec(eKinetic);
133 xSec[1] = xSec[0]+theSC.GetXsec(eKinetic);
134 xSec[2] = xSec[1]+theTC.GetXsec(eKinetic);
135 xSec[3] = xSec[2]+theLC.GetXsec(eKinetic);
136 G4int it;
137 unsigned int i=0;
138 G4double random = G4UniformRand();
139 if(xSec[3]==0)
140 {
141 it=-1;
142 }
143 else
144 {
145 for(i=0; i<4; i++)
146 {
147 it =i;
148 if(random<xSec[i]/xSec[3]) break;
149 }
150 }
151
152// dice neutron multiplicities, energies and momenta in Lab. @@
153// no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
154// also for mean, we rely on the consistancy of the data. @@
155
156 G4int Prompt=0, delayed=0, all=0;
157 G4DynamicParticleVector * theNeutrons = 0;
158 switch(it) // check logic, and ask, if partials can be assumed to correspond to individual particles @@@
159 {
160 case 0:
161 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 0);
162 if(Prompt==0&&delayed==0) Prompt=all;
163 theNeutrons = theFC.ApplyYourself(Prompt); // delayed always in FS
164 // take 'U' into account explicitly (see 5.4) in the sampling of energy @@@@
165 break;
166 case 1:
167 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 1);
168 if(Prompt==0&&delayed==0) Prompt=all;
169 theNeutrons = theSC.ApplyYourself(Prompt); // delayed always in FS, off done in FSFissionFS
170 break;
171 case 2:
172 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 2);
173 if(Prompt==0&&delayed==0) Prompt=all;
174 theNeutrons = theTC.ApplyYourself(Prompt); // delayed always in FS
175 break;
176 case 3:
177 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 3);
178 if(Prompt==0&&delayed==0) Prompt=all;
179 theNeutrons = theLC.ApplyYourself(Prompt); // delayed always in FS
180 break;
181 default:
182 break;
183 }
184
185// dice delayed neutrons and photons, and fallback
186// for Prompt in case channel had no FS data; add all paricles to FS.
187
188 //TKWORK120531
189 if ( produceFissionFragments ) delayed=0;
190
191 G4double * theDecayConstants;
192
193 if( theNeutrons != 0)
194 {
195 theDecayConstants = new G4double[delayed];
196 //
197 //110527TKDB Unused codes, Detected by gcc4.6 compiler
198 //G4int nPhotons = 0;
199 //if(thePhotons!=0) nPhotons = thePhotons->size();
200 for(i=0; i<theNeutrons->size(); i++)
201 {
202 theResult.Get()->AddSecondary(theNeutrons->operator[](i), secID);
203 }
204 delete theNeutrons;
205
206 G4DynamicParticleVector * theDelayed = 0;
207// G4cout << "delayed" << G4endl;
208 theDelayed = theFS.ApplyYourself(0, delayed, theDecayConstants);
209 for(i=0; i<theDelayed->size(); i++)
210 {
211 G4double time = -G4Log(G4UniformRand())/theDecayConstants[i];
212 time += theTrack.GetGlobalTime();
213 theResult.Get()->AddSecondary(theDelayed->operator[](i), secID);
215 }
216 delete theDelayed;
217 }
218 else
219 {
220// cout << " all = "<<all<<G4endl;
221 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 0);
222 theDecayConstants = new G4double[delayed];
223 if(Prompt==0&&delayed==0) Prompt=all;
224 theNeutrons = theFS.ApplyYourself(Prompt, delayed, theDecayConstants);
225 //110527TKDB Unused codes, Detected by gcc4.6 compiler
226 //G4int nPhotons = 0;
227 //if(thePhotons!=0) nPhotons = thePhotons->size();
228 G4int i0;
229 for(i0=0; i0<Prompt; i0++)
230 {
231 theResult.Get()->AddSecondary(theNeutrons->operator[](i0), secID);
232 }
233
234//G4cout << "delayed" << G4endl;
235 for(i0=Prompt; i0<Prompt+delayed; i0++)
236 {
237 // Protect against the very rare case of division by zero
238 G4double time = 0.0;
239 if ( theDecayConstants[i0-Prompt] > 1.0e-30 ) {
240 time = -G4Log(G4UniformRand())/theDecayConstants[i0-Prompt];
241 } else {
243 ed << " theDecayConstants[i0-Prompt]=" << theDecayConstants[i0-Prompt]
244 << " -> cannot sample the time : set it to 0.0 !" << G4endl;
245 G4Exception( "G4ParticleHPFissionFS::ApplyYourself ", "HAD_FISSIONHP_001", JustWarning, ed );
246 }
247
248 time += theTrack.GetGlobalTime();
249 theResult.Get()->AddSecondary(theNeutrons->operator[](i0), secID);
251 }
252 delete theNeutrons;
253 }
254 delete [] theDecayConstants;
255// cout << "all delayed "<<delayed<<G4endl;
256 unsigned int nPhotons = 0;
257 if(thePhotons!=0)
258 {
259 nPhotons = thePhotons->size();
260 for(i=0; i<nPhotons; i++)
261 {
262 theResult.Get()->AddSecondary(thePhotons->operator[](i), secID);
263 }
264 delete thePhotons;
265 }
266
267// finally deal with local energy depositions.
268// G4cout <<"Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
269// G4cout <<"Number of photons = "<<nPhotons<<G4endl;
270// G4cout <<"Number of Prompt = "<<Prompt<<G4endl;
271// G4cout <<"Number of delayed = "<<delayed<<G4endl;
272
274 G4double eDepByFragments = theERelease->GetFragmentKinetic();
275 //theResult.SetLocalEnergyDeposit(eDepByFragments);
277// cout << "local energy deposit" << eDepByFragments<<G4endl;
278// clean up the primary neutron
280 //G4cout << "Prompt = " << Prompt << ", Delayed = " << delayed << ", All= " << all << G4endl;
281 //G4cout << "local energy deposit " << eDepByFragments/MeV << "MeV " << G4endl;
282
283 //TKWORK120531
285 {
286 G4int fragA_Z=0;
287 G4int fragA_A=0;
288 G4int fragA_M=0;
289 // System is traget rest!
290 theFF.GetAFissionFragment(eKinetic,fragA_Z,fragA_A,fragA_M);
291 G4int fragB_Z=(G4int)theBaseZ-fragA_Z;
292 G4int fragB_A=(G4int)theBaseA-fragA_A-Prompt;
293 //fragA_M ignored
294 //G4int fragB_M=theBaseM-fragA_M;
295 //G4cout << fragA_Z << " " << fragA_A << " " << fragA_M << G4endl;
296 //G4cout << fragB_Z << " " << fragB_A << G4endl;
297
299 //Excitation energy is not taken into account
300 G4ParticleDefinition* pdA = pt->GetIon( fragA_Z , fragA_A , 0.0 );
301 G4ParticleDefinition* pdB = pt->GetIon( fragB_Z , fragB_A , 0.0 );
302
303 //Isotropic Distribution
305 // Bug #1745 DHW G4double theta = pi*G4UniformRand();
306 G4double costheta = 2.*G4UniformRand()-1.;
307 G4double theta = std::acos(costheta);
308 G4double sinth = std::sin(theta);
309 G4ThreeVector direction(sinth*std::cos(phi), sinth*std::sin(phi), costheta);
310
311 // Just use ENDF value for this
312 G4double ER = eDepByFragments;
313 G4double ma = pdA->GetPDGMass();
314 G4double mb = pdB->GetPDGMass();
315 G4double EA = ER / ( 1 + ma/mb);
316 G4double EB = ER - EA;
317 G4DynamicParticle* dpA = new G4DynamicParticle( pdA , direction , EA);
318 G4DynamicParticle* dpB = new G4DynamicParticle( pdB , -direction , EB);
321 }
322 //TKWORK 120531 END
323
324 return theResult.Get();
325 }
std::vector< G4DynamicParticle * > G4DynamicParticleVector
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
@ stopAndKill
G4double G4Log(G4double x)
Definition: G4Log.hh:226
Hep3Vector vect() const
void Put(const value_type &val) const
Definition: G4Cache.hh:321
void SetStatusChange(G4HadFinalStateStatus aS)
void SetLocalEnergyDeposit(G4double aE)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
void SetTime(G4double aT)
G4double GetTemperature() const
Definition: G4Material.hh:178
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:118
G4DynamicParticleVector * ApplyYourself(G4int nNeutrons)
void GetAFissionFragment(G4double, G4int &, G4int &, G4int &)
G4DynamicParticleVector * ApplyYourself(G4int Prompt, G4int delayed, G4double *decayconst)
void SampleNeutronMult(G4int &all, G4int &Prompt, G4int &delayed, G4double energy, G4int off)
G4ParticleHPFissionERelease * GetEnergyRelease()
void SetNeutronRP(const G4ReactionProduct &aNeutron)
void SetTarget(const G4ReactionProduct &aTarget)
G4DynamicParticleVector * GetPhotons()
virtual G4double GetXsec(G4double anEnergy)
void SetTarget(const G4ReactionProduct &aTarget)
void SetNeutronRP(const G4ReactionProduct &aNeutron)
G4ParticleHPFCFissionFS theFC
G4ParticleHPLCFissionFS theLC
G4ParticleHPFFFissionFS theFF
G4ParticleHPSCFissionFS theSC
G4ParticleHPTCFissionFS theTC
G4ParticleHPFSFissionFS theFS
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)

References G4HadFinalState::AddSecondary(), G4ParticleHPFCFissionFS::ApplyYourself(), G4ParticleHPLCFissionFS::ApplyYourself(), G4ParticleHPSCFissionFS::ApplyYourself(), G4ParticleHPTCFissionFS::ApplyYourself(), G4ParticleHPFSFissionFS::ApplyYourself(), G4HadFinalState::Clear(), G4endl, G4Exception(), G4Log(), G4UniformRand, G4Cache< VALTYPE >::Get(), G4HadProjectile::Get4Momentum(), G4ParticleHPFFFissionFS::GetAFissionFragment(), G4Nucleus::GetBiasedThermalNucleus(), G4HadProjectile::GetDefinition(), G4ParticleHPFSFissionFS::GetEnergyRelease(), G4ParticleHPFissionERelease::GetFragmentKinetic(), G4HadProjectile::GetGlobalTime(), G4ParticleHPManager::GetInstance(), G4IonTable::GetIon(), G4IonTable::GetIonTable(), G4HadProjectile::GetKineticEnergy(), G4ReactionProduct::GetKineticEnergy(), G4ParticleHPFSFissionFS::GetMass(), G4HadProjectile::GetMaterial(), G4ReactionProduct::GetMomentum(), G4HadFinalState::GetNumberOfSecondaries(), G4ParticleDefinition::GetPDGMass(), G4ParticleHPFSFissionFS::GetPhotons(), G4ParticleHPManager::GetProduceFissionFragments(), G4HadFinalState::GetSecondary(), G4Material::GetTemperature(), G4ParticleHPFissionBaseFS::GetXsec(), JustWarning, G4ReactionProduct::Lorentz(), produceFissionFragments, G4Cache< VALTYPE >::Put(), G4ParticleHPFSFissionFS::SampleNeutronMult(), G4ParticleHPFinalState::secID, G4ReactionProduct::SetDefinition(), G4ReactionProduct::SetKineticEnergy(), G4HadFinalState::SetLocalEnergyDeposit(), G4ReactionProduct::SetMomentum(), G4ParticleHPFissionBaseFS::SetNeutronRP(), G4ParticleHPFSFissionFS::SetNeutronRP(), G4HadFinalState::SetStatusChange(), G4ParticleHPFissionBaseFS::SetTarget(), G4ParticleHPFSFissionFS::SetTarget(), G4HadSecondary::SetTime(), stopAndKill, G4ParticleHPFinalState::theBaseA, G4ParticleHPFinalState::theBaseZ, theFC, theFF, theFS, theLC, G4ParticleHPFinalState::theResult, theSC, theTC, twopi, and CLHEP::HepLorentzVector::vect().

◆ GetA()

G4double G4ParticleHPFinalState::GetA ( void  )
inlineinherited

Definition at line 104 of file G4ParticleHPFinalState.hh.

104{ return theBaseA; }

References G4ParticleHPFinalState::theBaseA.

◆ GetM()

G4int G4ParticleHPFinalState::GetM ( )
inlineinherited

◆ GetN()

G4double G4ParticleHPFinalState::GetN ( )
inlineinherited

◆ GetXsec() [1/2]

virtual G4ParticleHPVector * G4ParticleHPFinalState::GetXsec ( )
inlinevirtualinherited

Reimplemented in G4ParticleHPFissionBaseFS, G4ParticleHPInelasticBaseFS, and G4ParticleHPInelasticCompFS.

Definition at line 99 of file G4ParticleHPFinalState.hh.

99{ return 0; }

◆ GetXsec() [2/2]

virtual G4double G4ParticleHPFinalState::GetXsec ( G4double  )
inlinevirtualinherited

◆ GetZ()

G4double G4ParticleHPFinalState::GetZ ( void  )
inlineinherited

◆ HasAnyData()

G4bool G4ParticleHPFinalState::HasAnyData ( )
inlineinherited

◆ HasFSData()

G4bool G4ParticleHPFinalState::HasFSData ( )
inlineinherited

◆ HasXsec()

G4bool G4ParticleHPFinalState::HasXsec ( )
inlineinherited

Definition at line 94 of file G4ParticleHPFinalState.hh.

94{ return hasXsec; }

References G4ParticleHPFinalState::hasXsec.

Referenced by G4ParticleHPChannel::DumpInfo().

◆ Init() [1/2]

void G4ParticleHPFissionFS::Init ( G4double  A,
G4double  Z,
G4int  M,
G4String dirName,
G4String aFSType,
G4ParticleDefinition projectile 
)
virtual

Implements G4ParticleHPFinalState.

Definition at line 53 of file G4ParticleHPFissionFS.cc.

54 {
55 //G4cout << "G4ParticleHPFissionFS::Init " << A << " " << Z << " " << M << G4endl;
56 theFS.Init(A, Z, M, dirName, aFSType, projectile);
57 theFC.Init(A, Z, M, dirName, aFSType, projectile);
58 theSC.Init(A, Z, M, dirName, aFSType, projectile);
59 theTC.Init(A, Z, M, dirName, aFSType, projectile);
60 theLC.Init(A, Z, M, dirName, aFSType, projectile);
61
62 theFF.Init(A, Z, M, dirName, aFSType, projectile);
63 if ( G4ParticleHPManager::GetInstance()->GetProduceFissionFragments() && theFF.HasFSData() )
64 {
65 G4cout << "Fission fragment production is now activated in HP package for "
66 << "Z = " << (G4int)Z
67 << ", A = " << (G4int)A
68 //<< "M = " << M
69 << G4endl;
70 G4cout << "As currently modeled this option precludes production of delayed neutrons from fission fragments." << G4endl;
72 }
73 }
#define M(row, col)
const G4int Z[17]
const G4double A[17]
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)

References A, G4cout, G4endl, G4ParticleHPManager::GetInstance(), G4ParticleHPFinalState::HasFSData(), G4ParticleHPFFFissionFS::Init(), G4ParticleHPFSFissionFS::Init(), G4ParticleHPFCFissionFS::Init(), G4ParticleHPLCFissionFS::Init(), G4ParticleHPSCFissionFS::Init(), G4ParticleHPTCFissionFS::Init(), M, produceFissionFragments, theFC, theFF, theFS, theLC, theSC, theTC, and Z.

◆ Init() [2/2]

void G4ParticleHPFinalState::Init ( G4double  A,
G4double  Z,
G4String dirName,
G4String aFSType,
G4ParticleDefinition projectile 
)
inlineinherited

Definition at line 76 of file G4ParticleHPFinalState.hh.

78 {
79 G4int M = 0;
80 Init ( A, Z, M, dirName, aFSType,const_cast<G4ParticleDefinition*>(projectile));
81 }
void Init(G4double A, G4double Z, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)

References A, G4ParticleHPFinalState::Init(), M, and Z.

Referenced by G4ParticleHPFinalState::Init(), and G4ParticleHPChannel::UpdateData().

◆ New()

G4ParticleHPFinalState * G4ParticleHPFissionFS::New ( )
inlinevirtual

Implements G4ParticleHPFinalState.

Definition at line 54 of file G4ParticleHPFissionFS.hh.

References G4ParticleHPFissionFS().

◆ SetA_Z()

void G4ParticleHPFinalState::SetA_Z ( G4double  anA,
G4double  aZ,
G4int  aM = 0 
)
inlineinherited

◆ SetAZMs()

void G4ParticleHPFinalState::SetAZMs ( G4double  anA,
G4double  aZ,
G4int  aM,
G4ParticleHPDataUsed  used 
)
inlineinherited

◆ SetProjectile()

void G4ParticleHPFinalState::SetProjectile ( G4ParticleDefinition projectile)
inlineinherited

Definition at line 115 of file G4ParticleHPFinalState.hh.

116 {
117 theProjectile = projectile;
118 }

References G4ParticleHPFinalState::theProjectile.

Referenced by G4ParticleHPChannel::Register().

Field Documentation

◆ hasAnyData

G4bool G4ParticleHPFinalState::hasAnyData
protectedinherited

◆ hasFSData

G4bool G4ParticleHPFinalState::hasFSData
protectedinherited

◆ hasXsec

G4bool G4ParticleHPFinalState::hasXsec
protectedinherited

◆ produceFissionFragments

G4bool G4ParticleHPFissionFS::produceFissionFragments
private

Definition at line 69 of file G4ParticleHPFissionFS.hh.

Referenced by ApplyYourself(), G4ParticleHPFissionFS(), and Init().

◆ secID

G4int G4ParticleHPFinalState::secID
protectedinherited

Definition at line 140 of file G4ParticleHPFinalState.hh.

Referenced by G4ParticleHPFinalState::adjust_final_state(), G4ParticleHPCaptureFS::ApplyYourself(), G4ParticleHPElasticFS::ApplyYourself(), ApplyYourself(), G4ParticleHPInelasticBaseFS::BaseApply(), G4ParticleHPInelasticCompFS::CompositeApply(), G4ParticleHP2AInelasticFS::G4ParticleHP2AInelasticFS(), G4ParticleHP2N2AInelasticFS::G4ParticleHP2N2AInelasticFS(), G4ParticleHP2NAInelasticFS::G4ParticleHP2NAInelasticFS(), G4ParticleHP2NDInelasticFS::G4ParticleHP2NDInelasticFS(), G4ParticleHP2NInelasticFS::G4ParticleHP2NInelasticFS(), G4ParticleHP2NPInelasticFS::G4ParticleHP2NPInelasticFS(), G4ParticleHP2PInelasticFS::G4ParticleHP2PInelasticFS(), G4ParticleHP3AInelasticFS::G4ParticleHP3AInelasticFS(), G4ParticleHP3NAInelasticFS::G4ParticleHP3NAInelasticFS(), G4ParticleHP3NInelasticFS::G4ParticleHP3NInelasticFS(), G4ParticleHP3NPInelasticFS::G4ParticleHP3NPInelasticFS(), G4ParticleHP4NInelasticFS::G4ParticleHP4NInelasticFS(), G4ParticleHPAInelasticFS::G4ParticleHPAInelasticFS(), G4ParticleHPCaptureFS::G4ParticleHPCaptureFS(), G4ParticleHPD2AInelasticFS::G4ParticleHPD2AInelasticFS(), G4ParticleHPDAInelasticFS::G4ParticleHPDAInelasticFS(), G4ParticleHPDInelasticFS::G4ParticleHPDInelasticFS(), G4ParticleHPElasticFS::G4ParticleHPElasticFS(), G4ParticleHPFinalState::G4ParticleHPFinalState(), G4ParticleHPFissionFS(), G4ParticleHPHe3InelasticFS::G4ParticleHPHe3InelasticFS(), G4ParticleHPN2AInelasticFS::G4ParticleHPN2AInelasticFS(), G4ParticleHPN2PInelasticFS::G4ParticleHPN2PInelasticFS(), G4ParticleHPN3AInelasticFS::G4ParticleHPN3AInelasticFS(), G4ParticleHPNAInelasticFS::G4ParticleHPNAInelasticFS(), G4ParticleHPND2AInelasticFS::G4ParticleHPND2AInelasticFS(), G4ParticleHPNDInelasticFS::G4ParticleHPNDInelasticFS(), G4ParticleHPNHe3InelasticFS::G4ParticleHPNHe3InelasticFS(), G4ParticleHPNInelasticFS::G4ParticleHPNInelasticFS(), G4ParticleHPNPAInelasticFS::G4ParticleHPNPAInelasticFS(), G4ParticleHPNPInelasticFS::G4ParticleHPNPInelasticFS(), G4ParticleHPNT2AInelasticFS::G4ParticleHPNT2AInelasticFS(), G4ParticleHPNTInelasticFS::G4ParticleHPNTInelasticFS(), G4ParticleHPNXInelasticFS::G4ParticleHPNXInelasticFS(), G4ParticleHPPAInelasticFS::G4ParticleHPPAInelasticFS(), G4ParticleHPPDInelasticFS::G4ParticleHPPDInelasticFS(), G4ParticleHPPInelasticFS::G4ParticleHPPInelasticFS(), G4ParticleHPPTInelasticFS::G4ParticleHPPTInelasticFS(), G4ParticleHPT2AInelasticFS::G4ParticleHPT2AInelasticFS(), G4ParticleHPTInelasticFS::G4ParticleHPTInelasticFS(), and G4ParticleHPInelasticCompFS::use_nresp71_model().

◆ theBaseA

G4double G4ParticleHPFinalState::theBaseA
protectedinherited

◆ theBaseM

G4int G4ParticleHPFinalState::theBaseM
protectedinherited

◆ theBaseZ

G4double G4ParticleHPFinalState::theBaseZ
protectedinherited

◆ theFC

G4ParticleHPFCFissionFS G4ParticleHPFissionFS::theFC
private

Definition at line 63 of file G4ParticleHPFissionFS.hh.

Referenced by ApplyYourself(), and Init().

◆ theFF

G4ParticleHPFFFissionFS G4ParticleHPFissionFS::theFF
private

Definition at line 68 of file G4ParticleHPFissionFS.hh.

Referenced by ApplyYourself(), and Init().

◆ theFS

G4ParticleHPFSFissionFS G4ParticleHPFissionFS::theFS
private

Definition at line 62 of file G4ParticleHPFissionFS.hh.

Referenced by ApplyYourself(), and Init().

◆ theLC

G4ParticleHPLCFissionFS G4ParticleHPFissionFS::theLC
private

Definition at line 66 of file G4ParticleHPFissionFS.hh.

Referenced by ApplyYourself(), and Init().

◆ theNames

G4ParticleHPNames G4ParticleHPFinalState::theNames
protectedinherited

◆ theNDLDataA

G4int G4ParticleHPFinalState::theNDLDataA
protectedinherited

◆ theNDLDataM

G4int G4ParticleHPFinalState::theNDLDataM
protectedinherited

◆ theNDLDataZ

G4int G4ParticleHPFinalState::theNDLDataZ
protectedinherited

◆ theProjectile

G4ParticleDefinition* G4ParticleHPFinalState::theProjectile
protectedinherited

◆ theResult

G4Cache< G4HadFinalState* > G4ParticleHPFinalState::theResult
protectedinherited

Definition at line 129 of file G4ParticleHPFinalState.hh.

Referenced by G4ParticleHPFinalState::adjust_final_state(), G4FissionLibrary::ApplyYourself(), G4ParticleHP2AInelasticFS::ApplyYourself(), G4ParticleHP2N2AInelasticFS::ApplyYourself(), G4ParticleHP2NAInelasticFS::ApplyYourself(), G4ParticleHP2NDInelasticFS::ApplyYourself(), G4ParticleHP2NInelasticFS::ApplyYourself(), G4ParticleHP2NPInelasticFS::ApplyYourself(), G4ParticleHP2PInelasticFS::ApplyYourself(), G4ParticleHP3AInelasticFS::ApplyYourself(), G4ParticleHP3NAInelasticFS::ApplyYourself(), G4ParticleHP3NInelasticFS::ApplyYourself(), G4ParticleHP3NPInelasticFS::ApplyYourself(), G4ParticleHP4NInelasticFS::ApplyYourself(), G4ParticleHPAInelasticFS::ApplyYourself(), G4ParticleHPCaptureFS::ApplyYourself(), G4ParticleHPD2AInelasticFS::ApplyYourself(), G4ParticleHPDAInelasticFS::ApplyYourself(), G4ParticleHPDInelasticFS::ApplyYourself(), G4ParticleHPElasticFS::ApplyYourself(), ApplyYourself(), G4ParticleHPHe3InelasticFS::ApplyYourself(), G4ParticleHPN2AInelasticFS::ApplyYourself(), G4ParticleHPN2PInelasticFS::ApplyYourself(), G4ParticleHPN3AInelasticFS::ApplyYourself(), G4ParticleHPNAInelasticFS::ApplyYourself(), G4ParticleHPND2AInelasticFS::ApplyYourself(), G4ParticleHPNDInelasticFS::ApplyYourself(), G4ParticleHPNHe3InelasticFS::ApplyYourself(), G4ParticleHPNInelasticFS::ApplyYourself(), G4ParticleHPNPAInelasticFS::ApplyYourself(), G4ParticleHPNPInelasticFS::ApplyYourself(), G4ParticleHPNT2AInelasticFS::ApplyYourself(), G4ParticleHPNTInelasticFS::ApplyYourself(), G4ParticleHPNXInelasticFS::ApplyYourself(), G4ParticleHPPAInelasticFS::ApplyYourself(), G4ParticleHPPDInelasticFS::ApplyYourself(), G4ParticleHPPInelasticFS::ApplyYourself(), G4ParticleHPPTInelasticFS::ApplyYourself(), G4ParticleHPT2AInelasticFS::ApplyYourself(), G4ParticleHPTInelasticFS::ApplyYourself(), G4ParticleHPInelasticBaseFS::BaseApply(), G4ParticleHPInelasticCompFS::CompositeApply(), G4ParticleHPFinalState::G4ParticleHPFinalState(), G4ParticleHPInelasticCompFS::use_nresp71_model(), and G4ParticleHPFinalState::~G4ParticleHPFinalState().

◆ theSC

G4ParticleHPSCFissionFS G4ParticleHPFissionFS::theSC
private

Definition at line 64 of file G4ParticleHPFissionFS.hh.

Referenced by ApplyYourself(), and Init().

◆ theTC

G4ParticleHPTCFissionFS G4ParticleHPFissionFS::theTC
private

Definition at line 65 of file G4ParticleHPFissionFS.hh.

Referenced by ApplyYourself(), and Init().


The documentation for this class was generated from the following files: