Geant4-11
G4ParticleHPInelasticCompFS.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// P. Arce, June-2014 Conversion neutron_hp to particle_hp
28//
29// June-2019 - E. Mendoza - re-build "two_body_reaction", to be used by
30// incident charged particles (now isotropic emission in the CMS).
31// Also restrict nresp use below 20 MeV (for future developments).
32// Add photon emission when no data available.
33
34#ifndef G4ParticleHPInelasticCompFS_h
35#define G4ParticleHPInelasticCompFS_h 1
36
37#include "globals.hh"
38#include "G4HadProjectile.hh"
39#include "G4HadFinalState.hh"
46#include "G4Nucleus.hh"
47
48#include "G4NRESP71M03.hh"
49
51{
52 public:
53
55 {
56 QI.resize(51);
57 LR.resize(51);
58 for(G4int i=0; i<51; i++) {
59 hasXsec = true;
60 theXsection[i] = 0;
63 theEnergyAngData[i] = 0;
65 QI[i] = 0.0;
66 LR[i] = 0;
67 }
68 }
69
71 {
72 for(G4int i=0; i<51; i++) {
73 if (theXsection[i] != 0) delete theXsection[i];
74 if (theEnergyDistribution[i] != 0) delete theEnergyDistribution[i];
76 if (theEnergyAngData[i] != 0) delete theEnergyAngData[i];
77 if (theFinalStatePhotons[i] != 0) delete theFinalStatePhotons[i];
78 }
79 }
80
81 void Init(G4double A, G4double Z, G4int M, G4String& dirName,
83
84 void InitGammas(G4double AR, G4double ZR);
85
86 virtual G4HadFinalState* ApplyYourself(const G4HadProjectile& theTrack) = 0;
87
89
90 virtual G4double GetXsec(G4double anEnergy)
91 {
92 return std::max(0., theXsection[50]->GetY(anEnergy));
93 }
94
95 virtual G4ParticleHPVector* GetXsec() { return theXsection[50]; }
96
98
99 void CompositeApply(const G4HadProjectile& theTrack,
100 G4ParticleDefinition* aHadron);
101
103 G4ReactionProduct& aTarget,
104 G4int it)
105 {
106 if (theAngularDistribution[it] != 0) {
107 theAngularDistribution[it]->SetTarget(aTarget);
108 theAngularDistribution[it]->SetProjectileRP(anIncidentPart);
109 }
110
111 if (theEnergyAngData[it] != 0) {
112 theEnergyAngData[it]->SetTarget(aTarget);
113 theEnergyAngData[it]->SetProjectileRP(anIncidentPart);
114 }
115 }
116
117 protected:
118
123
125
128
129 protected:
130 std::vector<G4double> QI;
131 std::vector<G4int> LR;
132
133 private:
134 // (projectile, target, hadron, mu of hadron)
136 G4ReactionProduct* product, G4double resExcitationEnergy);
137
139 G4bool use_nresp71_model(const G4ParticleDefinition* aDefinition, const G4int it,
140 const G4ReactionProduct& theTarget, G4ReactionProduct& boosted);
141
142};
143
144#endif
#define M(row, col)
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
void SetTarget(const G4ReactionProduct &aTarget)
void SetProjectileRP(const G4ReactionProduct &anIncidentParticleRP)
void SetProjectileRP(G4ReactionProduct &aIncidentPart)
void SetTarget(G4ReactionProduct &aTarget)
void InitDistributionInitialState(G4ReactionProduct &anIncidentPart, G4ReactionProduct &aTarget, G4int it)
G4int SelectExitChannel(G4double eKinetic)
void CompositeApply(const G4HadProjectile &theTrack, G4ParticleDefinition *aHadron)
G4ParticleHPAngular * theAngularDistribution[51]
void InitGammas(G4double AR, G4double ZR)
virtual G4ParticleHPFinalState * New()=0
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aSFType, G4ParticleDefinition *)
G4ParticleHPEnergyDistribution * theEnergyDistribution[51]
virtual G4double GetXsec(G4double anEnergy)
G4ParticleHPEnAngCorrelation * theEnergyAngData[51]
virtual G4ParticleHPVector * GetXsec()
G4ParticleHPPhotonDist * theFinalStatePhotons[51]
void two_body_reaction(G4ReactionProduct *proj, G4ReactionProduct *targ, G4ReactionProduct *product, G4double resExcitationEnergy)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &theTrack)=0
G4bool use_nresp71_model(const G4ParticleDefinition *aDefinition, const G4int it, const G4ReactionProduct &theTarget, G4ReactionProduct &boosted)
T max(const T t1, const T t2)
brief Return the largest of the two arguments