Geant4-11
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes
G4FissionLibrary Class Reference

#include <G4FissionLibrary.hh>

Inheritance diagram for G4FissionLibrary:
G4ParticleHPFinalState

Public Member Functions

G4HadFinalStateApplyYourself (const G4HadProjectile &theTrack)
 
 G4FissionLibrary ()
 
G4double GetA ()
 
G4int GetM ()
 
G4double GetN ()
 
virtual G4ParticleHPVectorGetXsec ()
 
virtual G4double GetXsec (G4double)
 
G4double GetZ ()
 
G4bool HasAnyData ()
 
G4bool HasFSData ()
 
G4bool HasXsec ()
 
void Init (G4double A, G4double Z, G4int M, G4String &dirName, G4String &, G4ParticleDefinition *)
 
void Init (G4double A, G4double Z, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
 
G4ParticleHPFinalStateNew ()
 
void SetA_Z (G4double anA, G4double aZ, G4int aM=0)
 
void SetAZMs (G4double anA, G4double aZ, G4int aM, G4ParticleHPDataUsed used)
 
void SetProjectile (G4ParticleDefinition *projectile)
 
 ~G4FissionLibrary ()
 

Protected Member Functions

void adjust_final_state (G4LorentzVector)
 

Protected Attributes

G4bool hasAnyData
 
G4bool hasFSData
 
G4bool hasXsec
 
G4double theBaseA
 
G4int theBaseM
 
G4double theBaseZ
 
G4ParticleHPNames theNames
 
G4int theNDLDataA
 
G4int theNDLDataM
 
G4int theNDLDataZ
 
G4ParticleDefinitiontheProjectile
 
G4Cache< G4HadFinalState * > theResult
 

Private Member Functions

G4ParticleHPFissionEReleaseGetEnergyRelease ()
 
void SampleMult (const G4HadProjectile &theTrack, G4int *nPrompt, G4int *gPrompt, G4double eKinetic)
 

Private Attributes

G4fissionEventfe
 
G4int secID
 
G4double targetMass
 
G4ParticleHPEnergyDistribution theDelayedNeutronEnDis
 
G4ParticleHPFissionERelease theEnergyRelease
 
G4ParticleHPParticleYield theFinalStateNeutrons
 
G4ParticleHPPhotonDist theFinalStatePhotons
 
G4int theIsotope
 
G4ParticleHPAngular theNeutronAngularDis
 
G4ParticleHPEnergyDistribution thePromptNeutronEnDis
 

Detailed Description

Definition at line 76 of file G4FissionLibrary.hh.

Constructor & Destructor Documentation

◆ G4FissionLibrary()

G4FissionLibrary::G4FissionLibrary ( )

Definition at line 67 of file G4FissionLibrary.cc.

69{
70 hasXsec = false;
71 fe=0;
72 secID = G4PhysicsModelCatalog::GetModelID( "model_G4LLNLFission" );
73}
G4fissionEvent * fe
static G4int GetModelID(const G4int modelIndex)

References fe, G4PhysicsModelCatalog::GetModelID(), G4ParticleHPFinalState::hasXsec, and secID.

Referenced by New().

◆ ~G4FissionLibrary()

G4FissionLibrary::~G4FissionLibrary ( )

Definition at line 75 of file G4FissionLibrary.cc.

76{}

Member Function Documentation

◆ adjust_final_state()

void G4ParticleHPFinalState::adjust_final_state ( G4LorentzVector  init_4p_lab)
protectedinherited

Definition at line 47 of file G4ParticleHPFinalState.cc.

48{
49
50 G4double minimum_energy = 1*keV;
51
52 if ( G4ParticleHPManager::GetInstance()->GetDoNotAdjustFinalState() ) return;
53
54 G4int nSecondaries = theResult.Get()->GetNumberOfSecondaries();
55
56 G4int sum_Z = 0;
57 G4int sum_A = 0;
58 G4int max_SecZ = 0;
59 G4int max_SecA = 0;
60 G4int imaxA = -1;
61 for ( int i = 0 ; i < nSecondaries ; i++ )
62 {
63 //G4cout << "G4ParticleHPFinalState::adjust_final_state theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName() = " << theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName() << G4endl;
65 max_SecZ = std::max ( max_SecZ , theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicNumber() );
67 max_SecA = std::max ( max_SecA , theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass() );
68 if ( theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass() == max_SecA ) imaxA = i;
69#ifdef G4PHPDEBUG
70 if( std::getenv("G4ParticleHPDebug")) G4cout << "G4ParticleHPFinalState::adjust_final_stat SECO " << i << " " <<theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName() << G4endl;
71#endif
72
73 }
74
75 G4ParticleDefinition* resi_pd = 0;
76
77 G4double baseZNew = theBaseZ;
78 G4double baseANew = theBaseA;
80 baseANew ++;
81 } else if( theProjectile == G4Proton::Proton() ) {
82 baseZNew ++;
83 baseANew ++;
84 } else if( theProjectile == G4Deuteron::Deuteron() ) {
85 baseZNew ++;
86 baseANew += 2;
87 } else if( theProjectile == G4Triton::Triton() ) {
88 baseZNew ++;
89 baseANew += 3;
90 } else if( theProjectile == G4He3::He3() ) {
91 baseZNew += 2;
92 baseANew += 3;
93 } else if( theProjectile == G4Alpha::Alpha() ) {
94 baseZNew += 2;
95 baseANew += 4;
96 }
97
98#ifdef G4PHPDEBUG
99 if( std::getenv("G4ParticleHPDebug")) G4cout << "G4ParticleHPFinalState::adjust_final_stat BaseZ " << baseZNew << " BaseA " << baseANew << " sum_Z " << sum_Z << " sum_A " << sum_A << G4endl;
100#endif
101
102 G4bool needOneMoreSec = false;
103 G4ParticleDefinition* oneMoreSec_pd = 0;
104 if ( (int)(baseZNew - sum_Z) == 0 && (int)(baseANew - sum_A) == 0 )
105 {
106 //All secondaries are already created;
107 resi_pd = theResult.Get()->GetSecondary( imaxA )->GetParticle()->GetDefinition();
108 }
109 else
110 {
111 if ( max_SecA >= int(baseANew - sum_A) )
112 {
113 //Most heavy secondary is interpreted as residual
114 resi_pd = theResult.Get()->GetSecondary( imaxA )->GetParticle()->GetDefinition();
115 needOneMoreSec = true;
116 }
117 else
118 {
119 //creation of residual is requierd
120 resi_pd = G4IonTable::GetIonTable()->GetIon ( int(baseZNew - sum_Z) , (int)(baseANew - sum_A) , 0.0 );
121 }
122
123 if ( needOneMoreSec )
124 {
125 if ( int(baseZNew - sum_Z) == 0 && (int)(baseANew - sum_A) > 0 )
126 {
127 //In this case, one neutron is added to secondaries
128 if ( int(baseANew - sum_A) > 1 ) G4cout << "More than one neutron is required for the balance of baryon number!" << G4endl;
129 oneMoreSec_pd = G4Neutron::Neutron();
130 }
131 else
132 {
133#ifdef G4PHPDEBUG
134 if( std::getenv("G4ParticleHPDebug")) G4cout << this << "G4ParticleHPFinalState oneMoreSec_pd Z " << baseZNew << " - " << sum_Z << " A " << baseANew << " - " << sum_A << " projectile " << theProjectile->GetParticleName() << G4endl;
135#endif
136 oneMoreSec_pd = G4IonTable::GetIonTable()->GetIon ( int(baseZNew - sum_Z) , (int)(baseANew - sum_A) , 0.0 );
137 if( !oneMoreSec_pd ) {
138 G4cerr << this << "G4ParticleHPFinalState oneMoreSec_pd Z " << baseZNew << " - " << sum_Z << " A " << baseANew << " - " << sum_A << " projectile " << theProjectile->GetParticleName() << G4endl;
139 G4Exception("G4ParticleHPFinalState:adjust_final_state",
140 "Warning",
142 "No adjustment will be done!");
143 return;
144 }
145 }
146 }
147
148 if ( resi_pd == 0 )
149 {
150 // theNDLDataZ,A has the Z and A of used NDL file
151 G4double ndlZNew = theNDLDataZ;
152 G4double ndlANew = theNDLDataA;
154 ndlANew ++;
155 } else if( theProjectile == G4Proton::Proton() ) {
156 ndlZNew ++;
157 ndlANew ++;
158 } else if( theProjectile == G4Deuteron::Deuteron() ) {
159 ndlZNew ++;
160 ndlANew += 2;
161 } else if( theProjectile == G4Triton::Triton() ) {
162 ndlZNew ++;
163 ndlANew += 3;
164 } else if( theProjectile == G4He3::He3() ) {
165 ndlZNew += 2;
166 ndlANew += 3;
167 } else if( theProjectile == G4Alpha::Alpha() ) {
168 ndlZNew += 2;
169 ndlANew += 4;
170 }
171 // theNDLDataZ,A has the Z and A of used NDL file
172 if ( (int)(ndlZNew - sum_Z) == 0 && (int)(ndlANew - sum_A) == 0 )
173 {
174 G4int dif_Z = ( int ) ( theNDLDataZ - theBaseZ );
175 G4int dif_A = ( int ) ( theNDLDataA - theBaseA );
176 resi_pd = G4IonTable::GetIonTable()->GetIon ( max_SecZ - dif_Z , max_SecA - dif_A , 0.0 );
177 if( !resi_pd ) {
178 G4cerr << "G4ParticleHPFinalState resi_pd Z " << max_SecZ << " - " << dif_Z << " A " << max_SecA << " - " << dif_A << " projectile " << theProjectile->GetParticleName() << G4endl;
179 G4Exception("G4ParticleHPFinalState:adjust_final_state",
180 "Warning",
182 "No adjustment will be done!");
183 return;
184 }
185
186 for ( int i = 0 ; i < nSecondaries ; i++ )
187 {
188 if ( theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicNumber() == max_SecZ
189 && theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass() == max_SecA )
190 {
192 p = p * resi_pd->GetPDGMass()/ G4IonTable::GetIonTable()->GetIon ( max_SecZ , max_SecA , 0.0 )->GetPDGMass();
193 theResult.Get()->GetSecondary( i )->GetParticle()->SetDefinition( resi_pd );
195 }
196 }
197 }
198 }
199 }
200
201
202 G4LorentzVector secs_4p_lab( 0.0 );
203
205 G4double fast = 0;
206 G4double slow = 1;
207 G4int ifast = 0;
208 G4int islow = 0;
209 G4int ires = -1;
210
211 for ( G4int i = 0 ; i < n_sec ; i++ )
212 {
213
214 //G4cout << "HP_DB " << i
215 // << " " << theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName()
216 // << " 4p " << theResult.GetSecondary( i )->GetParticle()->Get4Momentum()
217 // << " ke " << theResult.GetSecondary( i )->GetParticle()->Get4Momentum().e() - theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetPDGMass()
218 // << G4endl;
219
220 secs_4p_lab += theResult.Get()->GetSecondary( i )->GetParticle()->Get4Momentum();
221
222 G4double beta = 0;
224 {
226 }
227 else
228 {
229 beta = 1;
230 }
231
232 if ( theResult.Get()->GetSecondary( i )->GetParticle()->GetDefinition() == resi_pd ) ires = i;
233
234 if ( slow > beta && beta != 0 )
235 {
236 slow = beta;
237 islow = i;
238 }
239
240 if ( fast <= beta )
241 {
242 if ( fast != 1 )
243 {
244 fast = beta;
245 ifast = i;
246 }
247 else
248 {
249// fast is already photon then check E
251 if ( e > theResult.Get()->GetSecondary( ifast )->GetParticle()->Get4Momentum().e() )
252 {
253// among photons, the highest E becomes the fastest
254 ifast = i;
255 }
256 }
257 }
258 }
259
260
261 G4LorentzVector dif_4p = init_4p_lab - secs_4p_lab;
262
263 //G4cout << "HP_DB dif_4p " << init_4p_lab - secs_4p_lab << G4endl;
264 //G4cout << "HP_DB dif_3p mag " << ( dif_4p.v() ).mag() << G4endl;
265 //G4cout << "HP_DB dif_e " << dif_4p.e() - ( dif_4p.v() ).mag()<< G4endl;
266
267 G4LorentzVector p4(0);
268 if ( ires == -1 )
269 {
270// Create and Add Residual Nucleus
271 ires = nSecondaries;
272 nSecondaries += 1;
273
274 G4DynamicParticle* res = new G4DynamicParticle ( resi_pd , dif_4p.v() );
275 theResult.Get()->AddSecondary ( res, secID );
276
277 p4 = res->Get4Momentum();
278 if ( slow > p4.beta() )
279 {
280 slow = p4.beta();
281 islow = ires;
282 }
283 dif_4p = init_4p_lab - ( secs_4p_lab + p4 );
284 }
285
286 if ( needOneMoreSec && oneMoreSec_pd)
287 //
288 // fca: this is not a fix, this is a crash avoidance...
289 // fca: the baryon number is still wrong, most probably because it
290 // fca: should have been decreased, but since we could not create a particle
291 // fca: we just do not add it
292 //
293 {
294 nSecondaries += 1;
295 G4DynamicParticle* one = new G4DynamicParticle ( oneMoreSec_pd , dif_4p.v() );
296 theResult.Get()->AddSecondary ( one, secID );
297 p4 = one->Get4Momentum();
298 if ( slow > p4.beta() )
299 {
300 slow = p4.beta();
301 islow = nSecondaries-1; //Because the first is 0th, so the last becomes "nSecondaries-1"
302 }
303 dif_4p = init_4p_lab - ( secs_4p_lab + p4 );
304 }
305
306 //Which is bigger dif_p or dif_e
307
308 if ( dif_4p.v().mag() < std::abs( dif_4p.e() ) )
309 {
310
311 // Adjust p
312 //if ( dif_4p.v().mag() < 1*MeV )
313 if ( minimum_energy < dif_4p.v().mag() && dif_4p.v().mag() < 1*MeV )
314 {
315
316 nSecondaries += 1;
317 theResult.Get()->AddSecondary ( new G4DynamicParticle ( G4Gamma::Gamma() , dif_4p.v() ), secID );
318
319 }
320 else
321 {
322 //G4cout << "HP_DB Difference in dif_p is too large (>1MeV) or too small(<1keV) to adjust, so that give up tuning" << G4endl;
323 }
324
325 }
326 else
327 {
328
329 // dif_p > dif_e
330 // at first momentum
331 // Move residual momentum
332
333 p4 = theResult.Get()->GetSecondary( ires )->GetParticle()->Get4Momentum();
334 theResult.Get()->GetSecondary( ires )->GetParticle()->SetMomentum( p4.v() + dif_4p.v() );
335 dif_4p = init_4p_lab - ( secs_4p_lab - p4 + theResult.Get()->GetSecondary( ires )->GetParticle()->Get4Momentum() );
336
337 //G4cout << "HP_DB new residual kinetic energy " << theResult.GetSecondary( ires )->GetParticle()->GetKineticEnergy() << G4endl;
338
339 }
340
341 G4double dif_e = dif_4p.e() - ( dif_4p.v() ).mag();
342 //G4cout << "HP_DB dif_e " << dif_e << G4endl;
343
344 if ( dif_e > 0 )
345 {
346
347// create 2 gamma
348
349 nSecondaries += 2;
350 G4double e1 = ( dif_4p.e() -dif_4p.v().mag() ) / 2;
351
352 if ( minimum_energy < e1 )
353 {
354 G4double costh = 2.*G4UniformRand()-1.;
356 G4ThreeVector dir( std::sin(std::acos(costh))*std::cos(phi),
357 std::sin(std::acos(costh))*std::sin(phi),
358 costh);
361 }
362 else
363 {
364 //G4cout << "HP_DB Difference is too small(<1keV) to adjust, so that neglect it" << G4endl;
365 }
366
367 }
368 else //dif_e < 0
369 {
370
371// At first reduce KE of the fastest secondary;
374 G4ThreeVector dir = ( theResult.Get()->GetSecondary( ifast )->GetParticle()->GetMomentum() ).unit();
375
376 //G4cout << "HP_DB ifast " << ifast << " ke0 " << ke0 << G4endl;
377
378 if ( ke0 + dif_e > 0 )
379 {
380 theResult.Get()->GetSecondary( ifast )->GetParticle()->SetKineticEnergy( ke0 + dif_e );
381 G4ThreeVector dp = p0 - theResult.Get()->GetSecondary( ifast )->GetParticle()->GetMomentum();
382
384 //theResult.GetSecondary( islow )->GetParticle()->SetMomentum( p - dif_e*dir );
385 theResult.Get()->GetSecondary( islow )->GetParticle()->SetMomentum( p + dp );
386 }
387 else
388 {
389 //G4cout << "HP_DB Difference in dif_e too large ( <0MeV ) to adjust, so that give up tuning" << G4endl;
390 }
391
392 }
393
394}
static const G4double e1[44]
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
static constexpr double twopi
Definition: G4SIunits.hh:56
static constexpr double keV
Definition: G4SIunits.hh:202
static constexpr double MeV
Definition: G4SIunits.hh:200
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double mag() const
Hep3Vector v() const
static G4Alpha * Alpha()
Definition: G4Alpha.cc:88
value_type & Get() const
Definition: G4Cache.hh:315
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:93
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void SetMomentum(const G4ThreeVector &momentum)
G4ThreeVector GetMomentum() const
void SetKineticEnergy(G4double aEnergy)
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
G4DynamicParticle * GetParticle()
static G4He3 * He3()
Definition: G4He3.cc:93
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
static G4IonTable * GetIonTable()
Definition: G4IonTable.cc:170
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4int GetAtomicNumber() const
G4int GetAtomicMass() const
const G4String & GetParticleName() const
G4ParticleDefinition * theProjectile
G4Cache< G4HadFinalState * > theResult
static G4ParticleHPManager * GetInstance()
static G4Proton * Proton()
Definition: G4Proton.cc:92
static G4Triton * Triton()
Definition: G4Triton.cc:93
T max(const T t1, const T t2)
brief Return the largest of the two arguments

References G4HadFinalState::AddSecondary(), G4Alpha::Alpha(), CLHEP::HepLorentzVector::beta(), anonymous_namespace{G4PionRadiativeDecayChannel.cc}::beta, G4Deuteron::Deuteron(), CLHEP::HepLorentzVector::e(), e1, G4cerr, G4cout, G4endl, G4Exception(), G4UniformRand, G4Gamma::Gamma(), G4Cache< VALTYPE >::Get(), G4DynamicParticle::Get4Momentum(), G4ParticleDefinition::GetAtomicMass(), G4ParticleDefinition::GetAtomicNumber(), G4DynamicParticle::GetDefinition(), G4ParticleHPManager::GetInstance(), G4IonTable::GetIon(), G4IonTable::GetIonTable(), G4DynamicParticle::GetKineticEnergy(), G4DynamicParticle::GetMomentum(), G4HadFinalState::GetNumberOfSecondaries(), G4HadSecondary::GetParticle(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGMass(), G4HadFinalState::GetSecondary(), G4He3::He3(), JustWarning, keV, CLHEP::Hep3Vector::mag(), G4INCL::Math::max(), MeV, G4Neutron::Neutron(), G4Proton::Proton(), G4ParticleHPFinalState::secID, G4DynamicParticle::SetDefinition(), G4DynamicParticle::SetKineticEnergy(), G4DynamicParticle::SetMomentum(), G4ParticleHPFinalState::theBaseA, G4ParticleHPFinalState::theBaseZ, G4ParticleHPFinalState::theNDLDataA, G4ParticleHPFinalState::theNDLDataZ, G4ParticleHPFinalState::theProjectile, G4ParticleHPFinalState::theResult, G4Triton::Triton(), twopi, and CLHEP::HepLorentzVector::v().

Referenced by G4ParticleHPInelasticBaseFS::BaseApply(), and G4ParticleHPInelasticCompFS::CompositeApply().

◆ ApplyYourself()

G4HadFinalState * G4FissionLibrary::ApplyYourself ( const G4HadProjectile theTrack)
virtual

Reimplemented from G4ParticleHPFinalState.

Definition at line 143 of file G4FissionLibrary.cc.

144{
145
146 if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState );
147 theResult.Get()->Clear();
148
149 // prepare neutron
150 G4double eKinetic = theTrack.GetKineticEnergy();
151 const G4HadProjectile* incidentParticle = &theTrack;
152 G4ReactionProduct theNeutron(incidentParticle->GetDefinition() );
153 theNeutron.SetMomentum(incidentParticle->Get4Momentum().vect() );
154 theNeutron.SetKineticEnergy(eKinetic);
155
156 // prepare target
157 G4Nucleus aNucleus;
158 G4ReactionProduct theTarget;
159 G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
160 theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
161
162 // set neutron and target in the FS classes
163 //theNeutronAngularDis.SetNeutron(theNeutron);
166
167 // boost to target rest system
168 theNeutron.Lorentz(theNeutron, -1*theTarget);
169
170 eKinetic = theNeutron.GetKineticEnergy();
171
172 // dice neutron and gamma multiplicities, energies and momenta in Lab. @@
173 // no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
174 // also for mean, we rely on the consistency of the data. @@
175
176 G4int nPrompt=0, gPrompt=0;
177 SampleMult(theTrack, &nPrompt, &gPrompt, eKinetic);
178
179 // Build neutrons and add them to dynamic particle vector
180 G4double momentum;
181 for(G4int i=0; i<nPrompt; i++)
182 {
186 momentum = it->GetTotalMomentum();
187 G4ThreeVector temp(momentum*fe->getNeutronDircosu(i),
188 momentum*fe->getNeutronDircosv(i),
189 momentum*fe->getNeutronDircosw(i));
190 it->SetMomentum( temp );
191// it->SetGlobalTime(fe->getNeutronAge(i)*second);
193// G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt neutron " << i << " = " << it->GetKineticEnergy()<<G4endl;
194 }
195
196 // Build gammas, lorentz transform them, and add them to dynamic particle vector
197 for(G4int i=0; i<gPrompt; i++)
198 {
199 G4ReactionProduct * thePhoton = new G4ReactionProduct;
200 thePhoton->SetDefinition(G4Gamma::Gamma());
201 thePhoton->SetKineticEnergy(fe->getPhotonEnergy(i)*MeV);
202 momentum = thePhoton->GetTotalMomentum();
203 G4ThreeVector temp(momentum*fe->getPhotonDircosu(i),
204 momentum*fe->getPhotonDircosv(i),
205 momentum*fe->getPhotonDircosw(i));
206 thePhoton->SetMomentum( temp );
207 thePhoton->Lorentz(*thePhoton, -1.*theTarget);
208
210 it->SetDefinition(thePhoton->GetDefinition());
211 it->SetMomentum(thePhoton->GetMomentum());
212// it->SetGlobalTime(fe->getPhotonAge(i)*second);
213// G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt photon " << i << " = " << it->GetKineticEnergy()<<G4endl;
215 delete thePhoton;
216 }
217// G4cout <<"G4FissionLibrary::ApplyYourself: Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
218// G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt neutron = "<<nPrompt<<G4endl;
219// G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt photons = "<<gPrompt<<G4endl;
220
221 // finally deal with local energy depositions.
222 G4double eDepByFragments = theEnergyRelease.GetFragmentKinetic();
223 theResult.Get()->SetLocalEnergyDeposit(eDepByFragments);
224// G4cout << "G4FissionLibrary::local energy deposit" << eDepByFragments<<G4endl;
225 // clean up the primary neutron
227 return theResult.Get();
228}
@ stopAndKill
Hep3Vector vect() const
void Put(const value_type &val) const
Definition: G4Cache.hh:321
G4double GetTotalMomentum() const
void SampleMult(const G4HadProjectile &theTrack, G4int *nPrompt, G4int *gPrompt, G4double eKinetic)
G4ParticleHPAngular theNeutronAngularDis
G4ParticleHPFissionERelease theEnergyRelease
void SetStatusChange(G4HadFinalStateStatus aS)
void SetLocalEnergyDeposit(G4double aE)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTemperature() const
Definition: G4Material.hh:178
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:118
void SetTarget(const G4ReactionProduct &aTarget)
void SetProjectileRP(const G4ReactionProduct &anIncidentParticleRP)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double getPhotonDircosu(G4int index)
G4double getNeutronEnergy(G4int index)
G4double getPhotonEnergy(G4int index)
G4double getNeutronDircosv(G4int index)
G4double getPhotonDircosw(G4int index)
G4double getNeutronDircosw(G4int index)
G4double getNeutronDircosu(G4int index)
G4double getPhotonDircosv(G4int index)

References G4HadFinalState::AddSecondary(), G4HadFinalState::Clear(), fe, G4Gamma::Gamma(), G4Cache< VALTYPE >::Get(), G4HadProjectile::Get4Momentum(), G4Nucleus::GetBiasedThermalNucleus(), G4HadProjectile::GetDefinition(), G4ReactionProduct::GetDefinition(), G4ParticleHPFissionERelease::GetFragmentKinetic(), G4HadProjectile::GetKineticEnergy(), G4ReactionProduct::GetKineticEnergy(), G4HadProjectile::GetMaterial(), G4ReactionProduct::GetMomentum(), G4fissionEvent::getNeutronDircosu(), G4fissionEvent::getNeutronDircosv(), G4fissionEvent::getNeutronDircosw(), G4fissionEvent::getNeutronEnergy(), G4ParticleDefinition::GetPDGMass(), G4fissionEvent::getPhotonDircosu(), G4fissionEvent::getPhotonDircosv(), G4fissionEvent::getPhotonDircosw(), G4fissionEvent::getPhotonEnergy(), G4Material::GetTemperature(), G4DynamicParticle::GetTotalMomentum(), G4ReactionProduct::GetTotalMomentum(), G4ReactionProduct::Lorentz(), MeV, G4Neutron::Neutron(), G4Cache< VALTYPE >::Put(), SampleMult(), secID, G4DynamicParticle::SetDefinition(), G4ReactionProduct::SetDefinition(), G4ReactionProduct::SetKineticEnergy(), G4DynamicParticle::SetKineticEnergy(), G4HadFinalState::SetLocalEnergyDeposit(), G4ReactionProduct::SetMomentum(), G4DynamicParticle::SetMomentum(), G4ParticleHPAngular::SetProjectileRP(), G4HadFinalState::SetStatusChange(), G4ParticleHPAngular::SetTarget(), stopAndKill, targetMass, theEnergyRelease, theNeutronAngularDis, G4ParticleHPFinalState::theResult, and CLHEP::HepLorentzVector::vect().

◆ GetA()

G4double G4ParticleHPFinalState::GetA ( void  )
inlineinherited

Definition at line 104 of file G4ParticleHPFinalState.hh.

104{ return theBaseA; }

References G4ParticleHPFinalState::theBaseA.

◆ GetEnergyRelease()

G4ParticleHPFissionERelease * G4FissionLibrary::GetEnergyRelease ( )
inlineprivate

Definition at line 95 of file G4FissionLibrary.hh.

95 {
96 return &theEnergyRelease;
97 }

References theEnergyRelease.

◆ GetM()

G4int G4ParticleHPFinalState::GetM ( )
inlineinherited

◆ GetN()

G4double G4ParticleHPFinalState::GetN ( )
inlineinherited

◆ GetXsec() [1/2]

virtual G4ParticleHPVector * G4ParticleHPFinalState::GetXsec ( )
inlinevirtualinherited

Reimplemented in G4ParticleHPFissionBaseFS, G4ParticleHPInelasticBaseFS, and G4ParticleHPInelasticCompFS.

Definition at line 99 of file G4ParticleHPFinalState.hh.

99{ return 0; }

◆ GetXsec() [2/2]

virtual G4double G4ParticleHPFinalState::GetXsec ( G4double  )
inlinevirtualinherited

◆ GetZ()

G4double G4ParticleHPFinalState::GetZ ( void  )
inlineinherited

◆ HasAnyData()

G4bool G4ParticleHPFinalState::HasAnyData ( )
inlineinherited

◆ HasFSData()

G4bool G4ParticleHPFinalState::HasFSData ( )
inlineinherited

◆ HasXsec()

G4bool G4ParticleHPFinalState::HasXsec ( )
inlineinherited

Definition at line 94 of file G4ParticleHPFinalState.hh.

94{ return hasXsec; }

References G4ParticleHPFinalState::hasXsec.

Referenced by G4ParticleHPChannel::DumpInfo().

◆ Init() [1/2]

void G4FissionLibrary::Init ( G4double  A,
G4double  Z,
G4int  M,
G4String dirName,
G4String ,
G4ParticleDefinition  
)
virtual

Implements G4ParticleHPFinalState.

Definition at line 85 of file G4FissionLibrary.cc.

86{
87 G4String tString = "/FS/";
88 G4bool dbool;
89 theIsotope = static_cast<G4int>(1000*Z+A);
90 G4ParticleHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
91 G4String filename = aFile.GetName();
92
93 if(!dbool)
94 {
95 hasAnyData = false;
96 hasFSData = false;
97 hasXsec = false;
98 return;
99 }
100 //std::ifstream theData(filename, std::ios::in);
101 std::istringstream theData(std::ios::in);
103
104 // here it comes
105 G4int infoType, dataType;
106 hasFSData = false;
107 while (theData >> infoType) // Loop checking, 11.03.2015, T. Koi
108 {
109 hasFSData = true;
110 theData >> dataType;
111 switch(infoType)
112 {
113 case 1:
114 if(dataType==4) theNeutronAngularDis.Init(theData);
115 if(dataType==5) thePromptNeutronEnDis.Init(theData);
116 if(dataType==12) theFinalStatePhotons.InitMean(theData);
117 if(dataType==14) theFinalStatePhotons.InitAngular(theData);
118 if(dataType==15) theFinalStatePhotons.InitEnergies(theData);
119 break;
120 case 2:
121 if(dataType==1) theFinalStateNeutrons.InitMean(theData);
122 break;
123 case 3:
124 if(dataType==1) theFinalStateNeutrons.InitDelayed(theData);
125 if(dataType==5) theDelayedNeutronEnDis.Init(theData);
126 break;
127 case 4:
128 if(dataType==1) theFinalStateNeutrons.InitPrompt(theData);
129 break;
130 case 5:
131 if(dataType==1) theEnergyRelease.Init(theData);
132 break;
133 default:
134 G4cout << "G4FissionLibrary::Init: unknown data type"<<dataType<<G4endl;
135 throw G4HadronicException(__FILE__, __LINE__, "G4FissionLibrary::Init: unknown data type");
136 break;
137 }
138 }
140 //theData.close();
141}
#define M(row, col)
const G4int Z[17]
const G4double A[17]
G4ParticleHPEnergyDistribution thePromptNeutronEnDis
G4ParticleHPPhotonDist theFinalStatePhotons
G4ParticleHPParticleYield theFinalStateNeutrons
G4ParticleHPEnergyDistribution theDelayedNeutronEnDis
void Init(std::istream &aDataFile)
void Init(std::istream &aDataFile)
void GetDataStream(G4String, std::istringstream &iss)
G4ParticleHPDataUsed GetName(G4int A, G4int Z, G4String base, G4String rest, G4bool &active)
void InitMean(std::istream &aDataFile)
void InitDelayed(std::istream &aDataFile)
void InitPrompt(std::istream &aDataFile)
void InitEnergies(std::istream &aDataFile)
void InitAngular(std::istream &aDataFile)
G4bool InitMean(std::istream &aDataFile)

References A, G4cout, G4endl, G4ParticleHPManager::GetDataStream(), G4ParticleHPManager::GetInstance(), G4ParticleHPDataUsed::GetName(), G4ParticleHPNames::GetName(), G4ParticleHPParticleYield::GetTargetMass(), G4ParticleHPFinalState::hasAnyData, G4ParticleHPFinalState::hasFSData, G4ParticleHPFinalState::hasXsec, G4ParticleHPAngular::Init(), G4ParticleHPFissionERelease::Init(), G4ParticleHPEnergyDistribution::Init(), G4ParticleHPPhotonDist::InitAngular(), G4ParticleHPParticleYield::InitDelayed(), G4ParticleHPPhotonDist::InitEnergies(), G4ParticleHPParticleYield::InitMean(), G4ParticleHPPhotonDist::InitMean(), G4ParticleHPParticleYield::InitPrompt(), M, targetMass, theDelayedNeutronEnDis, theEnergyRelease, theFinalStateNeutrons, theFinalStatePhotons, theIsotope, G4ParticleHPFinalState::theNames, theNeutronAngularDis, thePromptNeutronEnDis, and Z.

◆ Init() [2/2]

void G4ParticleHPFinalState::Init ( G4double  A,
G4double  Z,
G4String dirName,
G4String aFSType,
G4ParticleDefinition projectile 
)
inlineinherited

Definition at line 76 of file G4ParticleHPFinalState.hh.

78 {
79 G4int M = 0;
80 Init ( A, Z, M, dirName, aFSType,const_cast<G4ParticleDefinition*>(projectile));
81 }
void Init(G4double A, G4double Z, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)

References A, G4ParticleHPFinalState::Init(), M, and Z.

Referenced by G4ParticleHPFinalState::Init(), and G4ParticleHPChannel::UpdateData().

◆ New()

G4ParticleHPFinalState * G4FissionLibrary::New ( )
virtual

Implements G4ParticleHPFinalState.

Definition at line 78 of file G4FissionLibrary.cc.

79{
81 return theNew;
82}

References G4FissionLibrary().

◆ SampleMult()

void G4FissionLibrary::SampleMult ( const G4HadProjectile theTrack,
G4int nPrompt,
G4int gPrompt,
G4double  eKinetic 
)
private

Definition at line 230 of file G4FissionLibrary.cc.

232{
233 G4double promptNeutronMulti = 0;
234 promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic); // prompt nubar from Geant
235 G4double delayedNeutronMulti = 0;
236 delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic); // delayed nubar from Geant
237
238 G4double time = theTrack.GetGlobalTime()/second;
239 G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
240 if(delayedNeutronMulti==0&&promptNeutronMulti==0) {
241 // no data for prompt and delayed neutrons in Geant
242 // but there is perhaps data for the total neutron multiplicity, in which case
243 // we use it for prompt neutron emission
244 if (fe != 0) delete fe;
245 fe = new G4fissionEvent(theIsotope, time, totalNeutronMulti, eKinetic);
246 } else {
247 // prompt nubar != 0 || delayed nubar != 0
248 if (fe != 0) delete fe;
249 fe = new G4fissionEvent(theIsotope, time, promptNeutronMulti, eKinetic);
250 }
251 *nPrompt = fe->getNeutronNu();
252 if (*nPrompt == -1) *nPrompt = 0; // the fission library libFission.a has no data for neutrons
253 *gPrompt = fe->getPhotonNu();
254 if (*gPrompt == -1) *gPrompt = 0; // the fission library libFission.a has no data for gammas
255}
static constexpr double second
Definition: G4SIunits.hh:137
G4double GetGlobalTime() const
G4double GetMean(G4double anEnergy)
G4double GetPrompt(G4double anEnergy)
G4double GetDelayed(G4double anEnergy)
G4int getNeutronNu()

References fe, G4ParticleHPParticleYield::GetDelayed(), G4HadProjectile::GetGlobalTime(), G4ParticleHPParticleYield::GetMean(), G4fissionEvent::getNeutronNu(), G4fissionEvent::getPhotonNu(), G4ParticleHPParticleYield::GetPrompt(), second, theFinalStateNeutrons, and theIsotope.

Referenced by ApplyYourself().

◆ SetA_Z()

void G4ParticleHPFinalState::SetA_Z ( G4double  anA,
G4double  aZ,
G4int  aM = 0 
)
inlineinherited

◆ SetAZMs()

void G4ParticleHPFinalState::SetAZMs ( G4double  anA,
G4double  aZ,
G4int  aM,
G4ParticleHPDataUsed  used 
)
inlineinherited

◆ SetProjectile()

void G4ParticleHPFinalState::SetProjectile ( G4ParticleDefinition projectile)
inlineinherited

Definition at line 115 of file G4ParticleHPFinalState.hh.

116 {
117 theProjectile = projectile;
118 }

References G4ParticleHPFinalState::theProjectile.

Referenced by G4ParticleHPChannel::Register().

Field Documentation

◆ fe

G4fissionEvent* G4FissionLibrary::fe
private

Definition at line 90 of file G4FissionLibrary.hh.

Referenced by ApplyYourself(), G4FissionLibrary(), and SampleMult().

◆ hasAnyData

G4bool G4ParticleHPFinalState::hasAnyData
protectedinherited

◆ hasFSData

G4bool G4ParticleHPFinalState::hasFSData
protectedinherited

◆ hasXsec

G4bool G4ParticleHPFinalState::hasXsec
protectedinherited

◆ secID

G4int G4FissionLibrary::secID
private

Definition at line 106 of file G4FissionLibrary.hh.

Referenced by ApplyYourself(), and G4FissionLibrary().

◆ targetMass

G4double G4FissionLibrary::targetMass
private

Definition at line 92 of file G4FissionLibrary.hh.

Referenced by ApplyYourself(), and Init().

◆ theBaseA

G4double G4ParticleHPFinalState::theBaseA
protectedinherited

◆ theBaseM

G4int G4ParticleHPFinalState::theBaseM
protectedinherited

◆ theBaseZ

G4double G4ParticleHPFinalState::theBaseZ
protectedinherited

◆ theDelayedNeutronEnDis

G4ParticleHPEnergyDistribution G4FissionLibrary::theDelayedNeutronEnDis
private

Definition at line 100 of file G4FissionLibrary.hh.

Referenced by Init().

◆ theEnergyRelease

G4ParticleHPFissionERelease G4FissionLibrary::theEnergyRelease
private

Definition at line 104 of file G4FissionLibrary.hh.

Referenced by ApplyYourself(), GetEnergyRelease(), and Init().

◆ theFinalStateNeutrons

G4ParticleHPParticleYield G4FissionLibrary::theFinalStateNeutrons
private

Definition at line 98 of file G4FissionLibrary.hh.

Referenced by Init(), and SampleMult().

◆ theFinalStatePhotons

G4ParticleHPPhotonDist G4FissionLibrary::theFinalStatePhotons
private

Definition at line 103 of file G4FissionLibrary.hh.

Referenced by Init().

◆ theIsotope

G4int G4FissionLibrary::theIsotope
private

Definition at line 91 of file G4FissionLibrary.hh.

Referenced by Init(), and SampleMult().

◆ theNames

G4ParticleHPNames G4ParticleHPFinalState::theNames
protectedinherited

◆ theNDLDataA

G4int G4ParticleHPFinalState::theNDLDataA
protectedinherited

◆ theNDLDataM

G4int G4ParticleHPFinalState::theNDLDataM
protectedinherited

◆ theNDLDataZ

G4int G4ParticleHPFinalState::theNDLDataZ
protectedinherited

◆ theNeutronAngularDis

G4ParticleHPAngular G4FissionLibrary::theNeutronAngularDis
private

Definition at line 101 of file G4FissionLibrary.hh.

Referenced by ApplyYourself(), and Init().

◆ theProjectile

G4ParticleDefinition* G4ParticleHPFinalState::theProjectile
protectedinherited

◆ thePromptNeutronEnDis

G4ParticleHPEnergyDistribution G4FissionLibrary::thePromptNeutronEnDis
private

Definition at line 99 of file G4FissionLibrary.hh.

Referenced by Init().

◆ theResult

G4Cache< G4HadFinalState* > G4ParticleHPFinalState::theResult
protectedinherited

Definition at line 129 of file G4ParticleHPFinalState.hh.

Referenced by G4ParticleHPFinalState::adjust_final_state(), ApplyYourself(), G4ParticleHP2AInelasticFS::ApplyYourself(), G4ParticleHP2N2AInelasticFS::ApplyYourself(), G4ParticleHP2NAInelasticFS::ApplyYourself(), G4ParticleHP2NDInelasticFS::ApplyYourself(), G4ParticleHP2NInelasticFS::ApplyYourself(), G4ParticleHP2NPInelasticFS::ApplyYourself(), G4ParticleHP2PInelasticFS::ApplyYourself(), G4ParticleHP3AInelasticFS::ApplyYourself(), G4ParticleHP3NAInelasticFS::ApplyYourself(), G4ParticleHP3NInelasticFS::ApplyYourself(), G4ParticleHP3NPInelasticFS::ApplyYourself(), G4ParticleHP4NInelasticFS::ApplyYourself(), G4ParticleHPAInelasticFS::ApplyYourself(), G4ParticleHPCaptureFS::ApplyYourself(), G4ParticleHPD2AInelasticFS::ApplyYourself(), G4ParticleHPDAInelasticFS::ApplyYourself(), G4ParticleHPDInelasticFS::ApplyYourself(), G4ParticleHPElasticFS::ApplyYourself(), G4ParticleHPFissionFS::ApplyYourself(), G4ParticleHPHe3InelasticFS::ApplyYourself(), G4ParticleHPN2AInelasticFS::ApplyYourself(), G4ParticleHPN2PInelasticFS::ApplyYourself(), G4ParticleHPN3AInelasticFS::ApplyYourself(), G4ParticleHPNAInelasticFS::ApplyYourself(), G4ParticleHPND2AInelasticFS::ApplyYourself(), G4ParticleHPNDInelasticFS::ApplyYourself(), G4ParticleHPNHe3InelasticFS::ApplyYourself(), G4ParticleHPNInelasticFS::ApplyYourself(), G4ParticleHPNPAInelasticFS::ApplyYourself(), G4ParticleHPNPInelasticFS::ApplyYourself(), G4ParticleHPNT2AInelasticFS::ApplyYourself(), G4ParticleHPNTInelasticFS::ApplyYourself(), G4ParticleHPNXInelasticFS::ApplyYourself(), G4ParticleHPPAInelasticFS::ApplyYourself(), G4ParticleHPPDInelasticFS::ApplyYourself(), G4ParticleHPPInelasticFS::ApplyYourself(), G4ParticleHPPTInelasticFS::ApplyYourself(), G4ParticleHPT2AInelasticFS::ApplyYourself(), G4ParticleHPTInelasticFS::ApplyYourself(), G4ParticleHPInelasticBaseFS::BaseApply(), G4ParticleHPInelasticCompFS::CompositeApply(), G4ParticleHPFinalState::G4ParticleHPFinalState(), G4ParticleHPInelasticCompFS::use_nresp71_model(), and G4ParticleHPFinalState::~G4ParticleHPFinalState().


The documentation for this class was generated from the following files: