Séminaire

How to unravel early moments of the Universe with neutrinos: introduction to the PTOLEMY project

What would we give to see an even younger image of the Universe from relics of the Big Bang?  And how can one even imagine how to do that?  One of the most subtle and important discoveries in elementary particle physics was to find that the tiny neutral particles that Enrico Fermi called the neutrinos have mass.  This mass was discovered indirectly through an effect predicted by Bruno Pontecorvo, now probed to high precision by KM3Net.

Neutrino-Nucelus Interaction Physics in 1-10 GeV

Precise nuclear physics theories and models are playing an increasingly important role in neutrino physics. While this has long been recognized in low-energy neutrino experiments, recent advances in accelerator-based neutrino oscillation studies have further highlighted the importance of nuclear many-body effects. Modern experiments such as T2K and NOvA require accurate simulations of nucleon correlations, a necessity that will persist in future experiments like ORCA and IceCube-Upgrade, DUNE, and Hyper-Kamiokande.

Backreaction and Cosmic Butterflies: what simulations can tell us about inflation

The small-scale physics of inflation can leave unique observational signatures in the gravitational wave background and may also generate primordial black holes as a dark matter candidate. These phenomena often involve a significant enhancement of inflationary fluctuations, potentially leading to the breakdown of standard perturbation theory. In this talk, I will discuss how lattice simulations provide a crucial tool for addressing these challenges.

Effective field theory reproducing the MOND phenomenology based on a non-Abelian Yang-Mills graviphoton

Motivated by the phenomenology of MOND, we propose a theory based on a fundamental non Abelian Yang-Mills gauge field with gravitational coupling constant (a "graviphoton") emerging in a regime of weak acceleration, i.e. below the MOND acceleration scale. Using the formalism of the effective field theory and invoking a mechanism of gravitational polarization of the dark matter medium, we show that generic solutions of this theory reproduce the deep MOND limit without having to introduce in an ad hoc way an arbitrary function in the action.

Gravitational Wave Precision Observables and Waveforms from Scattering Amplitudes

In recent years, Scattering Amplitudes methods, developed for computations in relativistic Quantum Field Theories, have been applied to compute observables which are relevant for the generation of Gravitational Wave templates. In the first part of the talk, I will give a review of recent achievements. In the second part of the talk, I will talk about new attempts to compute gravitational waveforms directly from Amplitudes, their matching to classical results from General Relativity and ongoing developments.

Pages

Subscribe to RSS - Séminaire