Séminaire

Black Holes in Lorentz-Violating Gravity

I will discuss black holes in the context of Einstein–aether and khronometric gravity — two closely related alternative theories of gravity that allow violations of local Lorentz invariance. Since these theories admit faster-than-light propagation, metric horizons are generically permeable and it is not clear whether proper black holes can exist; surprisingly, in some cases they do, thanks to the appearance of a new kind of “universal” horizon. I will review past and recent results on the topic, with a particular emphasis on the difficulty of finding rotating solutions.

An eikonal approach to gravitational scattering and waveforms

The classical limit of scattering amplitudes offers a convenient strategy to calculate gravitational-wave observables for binary processes in the post-Minkowskian (PM) regime, in which the two objects are far apart and interact weakly. In this talk I will discuss how the eikonal exponentiation offers a simple and conceptually transparent framework to exploit this connection and calculate key gravitational observables from amplitudes: the deflection angle for two-body encounters, energy and angular momentum losses, as well as the emitted gravitational waveform itself.

Black Hole Spectroscopy: from a mathematical problem to an observational reality

Dark compact objects are nowadays routinely observed through multiple experimental schemes. Measurements of their vibrational spectra offer unprecedented opportunities to investigate the highly dynamical regime of General Relativity, search for signs of new physics, and increase the evidence for their "black hole nature".

Probing the deep string spectrum

As is well known, the string spectrum comprises infinitely many states that can collectively be visualized along Regge trajectories of increasing mass and spin. Its massless and lightest levels, as well as certain higher spins including the leading Regge trajectory, have been the focus of past studies. In principle, access to any state is possible, but the traditional methodology is non-covariant and does not immediately lead to irreducible representations of the Wigner little group. In this talk, we will discuss a new and covariant technology of constructing the string spectrum.

Lattice simulations of inflation

Developing non-perturbative methods might be crucial for understanding inflation and its predictions. In this talk, I will present a nonlinear study of the inflationary epoch of the Universe based on numerical lattice simulations. I will first focus on a model known as axion inflation, where the inflaton is coupled to a gauge field via Chern-Simons interaction. As a second example, I will consider a single-field model with a resonant feature in the potential. I will show that, in both cases, nonlinear effects have important consequences for the inflationary dynamics.

Black holes with primary hair

We will construct and analyse explicit solutions in scalar tensor theories parametrised by two independent charges : their ADM mass and an additional primary hair associated to the minimally coupled scalar field. A special relation between the two will render the solutions regular everywhere and at the origin in particular.

Mapping the landscape of gravity theories

Both Einstein's equations and the field equations of a modified theory of gravity can be derived as equations of state from purely thermodynamical considerations, leading to the identification of GR with an equilibrium state of gravity and modified gravity with a non-equilibrium one. This breakthrough made the relationship between gravity and thermodynamics even more intriguing. I will present a new approach to the thermodynamics of modified gravity which is inspired by these results, but follows a starkly different path.

High-Energy Neutrinos: A New Trail Towards New Physics

The observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory has opened up a new window to the universe. These neutrinos traverse the longest distances from their sources and have the largest energy ever observed. These neutrinos open a new trail to search for new physics that covers parameter space not accessible to terrestrial neutrino experiments.

Searches for long-duration transient signals in ground-based gravitational-wave detectors

Over the past 8 years, Advanced LIGO and Advanced Virgo have detected about 90 gravitational-wave (GW) events, all of them produced by the coalescence of a compact binary system (CBC). In addition to CBCs, new types of GW signals are expected to be observed in the near future, as the sensitivity and observing time of GW detectors increase. Among them, we refer to long-duration transients as GW signals whose duration in the frequency band of the detectors ranges from few seconds to hours.

Pages

Subscribe to RSS - Séminaire