Geant4-11
G4mplIonisationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class header file
30//
31//
32// File name: G4mplIonisationModel
33//
34// Author: Vladimir Ivanchenko
35//
36// Creation date: 06.09.2005
37//
38// Modifications:
39// 12.08.2007 Changing low energy approximation and extrapolation.
40// Small bug fixing and refactoring (M. Vladymyrov)
41// 13.11.2007 Use low-energy asymptotic from [3] (V.Ivanchenko)
42//
43//
44// -------------------------------------------------------------------
45// References
46// [1] Steven P. Ahlen: Energy loss of relativistic heavy ionizing particles,
47// S.P. Ahlen, Rev. Mod. Phys 52(1980), p121
48// [2] K.A. Milton arXiv:hep-ex/0602040
49// [3] S.P. Ahlen and K. Kinoshita, Phys. Rev. D26 (1982) 2347
50
51
52//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
53//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
54
56#include "Randomize.hh"
58#include "G4SystemOfUnits.hh"
62#include "G4Log.hh"
63#include "G4Pow.hh"
64
65//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
66
67std::vector<G4double>* G4mplIonisationModel::dedx0 = nullptr;
68
71 magCharge(mCharge),
72 twoln10(G4Log(100.0)),
73 betalow(0.01),
74 betalim(0.1),
75 beta2lim(betalim*betalim),
76 bg2lim(beta2lim*(1.0 + beta2lim))
77{
78 nmpl = G4int(std::abs(magCharge) * 2 * CLHEP::fine_structure_const + 0.5);
79 if(nmpl > 6) { nmpl = 6; }
80 else if(nmpl < 1) { nmpl = 1; }
84}
85
86//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
87
89{
90 if(IsMaster()) { delete dedx0; }
91}
92
93//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
94
96{
97 monopole = p;
99 G4double emin =
100 std::min(LowEnergyLimit(),0.1*mass*(1./std::sqrt(1. - betalow*betalow) - 1.));
101 G4double emax =
102 std::max(HighEnergyLimit(),10.*mass*(1./std::sqrt(1. - beta2lim) - 1.));
103 SetLowEnergyLimit(emin);
105}
106
107//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
108
110 const G4DataVector&)
111{
112 if(nullptr == monopole) { SetParticle(p); }
114 if(IsMaster()) {
115 if(nullptr == dedx0) { dedx0 = new std::vector<G4double>; }
116 G4ProductionCutsTable* theCoupleTable=
118 G4int numOfCouples = theCoupleTable->GetTableSize();
119 G4int n = dedx0->size();
120 if(n < numOfCouples) { dedx0->resize(numOfCouples); }
121
122 G4Pow* g4calc = G4Pow::GetInstance();
123
124 // initialise vector assuming low conductivity
125 for(G4int i=0; i<numOfCouples; ++i) {
126
127 const G4Material* material =
128 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
129 G4double eDensity = material->GetElectronDensity();
130 G4double vF2 = 2*electron_Compton_length*g4calc->A13(3.*pi*pi*eDensity);
131 (*dedx0)[i] = pi_hbarc2_over_mc2*eDensity*nmpl*nmpl*
132 (G4Log(vF2/fine_structure_const) - 0.5)/vF2;
133 }
134 }
135}
136
137//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
138
140 const G4ParticleDefinition* p,
141 G4double kineticEnergy,
142 G4double)
143{
144 if(nullptr == monopole) { SetParticle(p); }
145 G4double tau = kineticEnergy / mass;
146 G4double gam = tau + 1.0;
147 G4double bg2 = tau * (tau + 2.0);
148 G4double beta2 = bg2 / (gam * gam);
149 G4double beta = std::sqrt(beta2);
150
151 // low-energy asymptotic formula
152 //G4double dedx = dedxlim*beta*material->GetDensity();
153 G4double dedx = (*dedx0)[CurrentCouple()->GetIndex()]*beta;
154
155 // above asymptotic
156 if(beta > betalow) {
157
158 // high energy
159 if(beta >= betalim) {
160 dedx = ComputeDEDXAhlen(material, bg2);
161
162 } else {
163
164 //G4double dedx1 = dedxlim*betalow*material->GetDensity();
165 G4double dedx1 = (*dedx0)[CurrentCouple()->GetIndex()]*betalow;
167
168 // extrapolation between two formula
169 G4double kapa2 = beta - betalow;
170 G4double kapa1 = betalim - beta;
171 dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2);
172 }
173 }
174 return dedx;
175}
176
177//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
178
180 G4double bg2)
181{
182 G4double eDensity = material->GetElectronDensity();
183 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
184 G4double cden = material->GetIonisation()->GetCdensity();
185 G4double mden = material->GetIonisation()->GetMdensity();
186 G4double aden = material->GetIonisation()->GetAdensity();
187 G4double x0den = material->GetIonisation()->GetX0density();
188 G4double x1den = material->GetIonisation()->GetX1density();
189
190 // Ahlen's formula for nonconductors, [1]p157, f(5.7)
191 G4double dedx = std::log(2.0 * electron_mass_c2 * bg2 / eexc) - 0.5;
192
193 // Kazama et al. cross-section correction
194 G4double k = 0.406;
195 if(nmpl > 1) k = 0.346;
196
197 // Bloch correction
198 const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685};
199
200 dedx += 0.5 * k - B[nmpl];
201
202 // density effect correction
203 G4double deltam;
204 G4double x = std::log(bg2) / twoln10;
205 if ( x >= x0den ) {
206 deltam = twoln10 * x - cden;
207 if ( x < x1den ) deltam += aden * std::pow((x1den-x), mden);
208 dedx -= 0.5 * deltam;
209 }
210
211 // now compute the total ionization loss
212 dedx *= pi_hbarc2_over_mc2 * eDensity * nmpl * nmpl;
213
214 if (dedx < 0.0) dedx = 0.;
215 return dedx;
216}
217
218//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
219
220void G4mplIonisationModel::SampleSecondaries(std::vector<G4DynamicParticle*>*,
222 const G4DynamicParticle*,
223 G4double,
224 G4double)
225{}
226
227//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
228
230 const G4MaterialCutsCouple* couple,
231 const G4DynamicParticle* dp,
232 const G4double tcut,
233 const G4double tmax,
234 const G4double length,
235 const G4double meanLoss)
236{
237 G4double siga = Dispersion(couple->GetMaterial(),dp,tcut,tmax,length);
238 G4double loss = meanLoss;
239 siga = std::sqrt(siga);
240 G4double twomeanLoss = meanLoss + meanLoss;
241
242 if(twomeanLoss < siga) {
243 G4double x;
244 do {
245 loss = twomeanLoss*G4UniformRand();
246 x = (loss - meanLoss)/siga;
247 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
248 } while (1.0 - 0.5*x*x < G4UniformRand());
249 } else {
250 do {
251 loss = G4RandGauss::shoot(meanLoss,siga);
252 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
253 } while (0.0 > loss || loss > twomeanLoss);
254 }
255 return loss;
256}
257
258//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
259
261 const G4DynamicParticle* dp,
262 const G4double tcut,
263 const G4double tmax,
264 const G4double length)
265{
266 G4double siga = 0.0;
267 G4double tau = dp->GetKineticEnergy()/mass;
268 if(tau > 0.0) {
269 const G4double beta = dp->GetBeta();
270 siga = (tmax/(beta*beta) - 0.5*tcut) * twopi_mc2_rcl2 * length
271 * material->GetElectronDensity() * chargeSquare;
272 }
273 return siga;
274}
275
276//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
static const G4double emax
G4double B(G4double temperature)
G4double G4Log(G4double x)
Definition: G4Log.hh:226
static constexpr double pi
Definition: G4SIunits.hh:55
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4UniformRand()
Definition: Randomize.hh:52
G4double GetKineticEnergy() const
G4double GetBeta() const
const G4Material * GetMaterial() const
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double A13(G4double A) const
Definition: G4Pow.cc:120
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:767
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:662
G4bool IsMaster() const
Definition: G4VEmModel.hh:746
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:655
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:774
const G4MaterialCutsCouple * CurrentCouple() const
Definition: G4VEmModel.hh:490
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:108
static std::vector< G4double > * dedx0
G4mplIonisationModel(G4double mCharge, const G4String &nam="mplIonisation")
G4ParticleChangeForLoss * fParticleChange
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
const G4ParticleDefinition * monopole
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
G4double ComputeDEDXAhlen(const G4Material *material, G4double bg2)
void SetParticle(const G4ParticleDefinition *p)
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double SampleFluctuations(const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double tcut, const G4double tmax, const G4double length, const G4double meanLoss) override
G4double Dispersion(const G4Material *, const G4DynamicParticle *, const G4double tcut, const G4double tmax, const G4double length) override
static constexpr double electron_mass_c2
static constexpr double GeV
static constexpr double fine_structure_const
static constexpr double g
static constexpr double cm2
static constexpr double hbarc
static constexpr double pi
Definition: SystemOfUnits.h:55
ThreeVector shoot(const G4int Ap, const G4int Af)
T max(const T t1, const T t2)
brief Return the largest of the two arguments
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
string material
Definition: eplot.py:19
float electron_mass_c2
Definition: hepunit.py:273
int twopi_mc2_rcl2
Definition: hepunit.py:293
float electron_Compton_length
Definition: hepunit.py:288
int fine_structure_const
Definition: hepunit.py:286