119 if(gamma < 1.0e3 || 0.0 == particleCharge)
126 const G4Field* pField =
nullptr;
127 G4bool fieldExertsForce =
false;
132 if(fieldMgr !=
nullptr)
143 G4double globPosVec[4], FieldValueVec[6];
145 globPosVec[0] = globPosition.
x();
146 globPosVec[1] = globPosition.
y();
147 globPosVec[2] = globPosition.
z();
153 G4ThreeVector(FieldValueVec[0], FieldValueVec[1], FieldValueVec[2]);
159 static const G4double fLambdaConst =
164 MeanFreePath = fLambdaConst *
166 (perpB * particleCharge * particleCharge);
170 G4cout <<
"G4SynchrotronRadiation::GetMeanFreePath "
174 <<
" MeanFreePath = " <<
G4BestUnit(MeanFreePath,
"Length")
186 <<
" perpB = " << perpB /
tesla <<
" Tesla"
187 <<
" Theta = " << Theta
188 <<
" std::sin(Theta)=" << std::sin(Theta) <<
'\n'
212 if(gamma <= 1.0e3 || 0.0 == particleCharge)
218 const G4Field* pField =
nullptr;
220 G4bool fieldExertsForce =
false;
224 if(fieldMgr !=
nullptr)
234 G4double globPosVec[4], FieldValueVec[6];
235 globPosVec[0] = globPosition.
x();
236 globPosVec[1] = globPosition.
y();
237 globPosVec[2] = globPosition.
z();
242 G4ThreeVector(FieldValueVec[0], FieldValueVec[1], FieldValueVec[2]);
254 if(energyOfSR <= 0.0)
263 gammaPolarization = gammaPolarization.
unit();
269 gammaPolarization.
z());
274 G4double newKinEnergy = kineticEnergy - energyOfSR;
276 if(newKinEnergy > 0.)
303 static constexpr G4double aa2 = 0.7;
304 static constexpr G4int ncheb1 = 27;
305 static constexpr G4double cheb1[ncheb1] = {
306 1.22371665676046468821, 0.108956475422163837267,
307 0.0383328524358594396134, 0.00759138369340257753721,
308 0.00205712048644963340914, 0.000497810783280019308661,
309 0.000130743691810302187818, 0.0000338168760220395409734,
310 8.97049680900520817728e-6, 2.38685472794452241466e-6,
311 6.41923109149104165049e-7, 1.73549898982749277843e-7,
312 4.72145949240790029153e-8, 1.29039866111999149636e-8,
313 3.5422080787089834182e-9, 9.7594757336403784905e-10,
314 2.6979510184976065731e-10, 7.480422622550977077e-11,
315 2.079598176402699913e-11, 5.79533622220841193e-12,
316 1.61856011449276096e-12, 4.529450993473807e-13,
317 1.2698603951096606e-13, 3.566117394511206e-14,
318 1.00301587494091e-14, 2.82515346447219e-15,
322 static constexpr G4double aa3 = 0.9132260271183847;
323 static constexpr G4int ncheb2 = 27;
324 static constexpr G4double cheb2[ncheb2] = {
325 1.1139496701107756, 0.3523967429328067, 0.0713849171926623,
326 0.01475818043595387, 0.003381255637322462, 0.0008228057599452224,
327 0.00020785506681254216, 0.00005390169253706556, 0.000014250571923902464,
328 3.823880733161044e-6, 1.0381966089136036e-6, 2.8457557457837253e-7,
329 7.86223332179956e-8, 2.1866609342508474e-8, 6.116186259857143e-9,
330 1.7191233618437565e-9, 4.852755117740807e-10, 1.3749966961763457e-10,
331 3.908961987062447e-11, 1.1146253766895824e-11, 3.1868887323415814e-12,
332 9.134319791300977e-13, 2.6211077371181566e-13, 7.588643377757906e-14,
333 2.1528376972619e-14, 6.030906040404772e-15, 1.9549163926819867e-15
337 static constexpr G4double aa4 = 2.4444485538746025480;
338 static constexpr G4double aa5 = 9.3830728608909477079;
339 static constexpr G4int ncheb3 = 28;
340 static constexpr G4double cheb3[ncheb3] = {
341 1.2292683840435586977, 0.160353449247864455879,
342 -0.0353559911947559448721, 0.00776901561223573936985,
343 -0.00165886451971685133259, 0.000335719118906954279467,
344 -0.0000617184951079161143187, 9.23534039743246708256e-6,
345 -6.06747198795168022842e-7, -3.07934045961999778094e-7,
346 1.98818772614682367781e-7, -8.13909971567720135413e-8,
347 2.84298174969641838618e-8, -9.12829766621316063548e-9,
348 2.77713868004820551077e-9, -8.13032767247834023165e-10,
349 2.31128525568385247392e-10, -6.41796873254200220876e-11,
350 1.74815310473323361543e-11, -4.68653536933392363045e-12,
351 1.24016595805520752748e-12, -3.24839432979935522159e-13,
352 8.44601465226513952994e-14, -2.18647276044246803998e-14,
353 5.65407548745690689978e-15, -1.46553625917463067508e-15,
354 3.82059606377570462276e-16, -1.00457896653436912508e-16
356 static constexpr G4double aa6 = 33.122936966163038145;
357 static constexpr G4int ncheb4 = 27;
358 static constexpr G4double cheb4[ncheb4] = {
359 1.69342658227676741765, 0.0742766400841232319225,
360 -0.019337880608635717358, 0.00516065527473364110491,
361 -0.00139342012990307729473, 0.000378549864052022522193,
362 -0.000103167085583785340215, 0.0000281543441271412178337,
363 -7.68409742018258198651e-6, 2.09543221890204537392e-6,
364 -5.70493140367526282946e-7, 1.54961164548564906446e-7,
365 -4.19665599629607704794e-8, 1.13239680054166507038e-8,
366 -3.04223563379021441863e-9, 8.13073745977562957997e-10,
367 -2.15969415476814981374e-10, 5.69472105972525594811e-11,
368 -1.48844799572430829499e-11, 3.84901514438304484973e-12,
369 -9.82222575944247161834e-13, 2.46468329208292208183e-13,
370 -6.04953826265982691612e-14, 1.44055805710671611984e-14,
371 -3.28200813577388740722e-15, 6.96566359173765367675e-16,
372 -1.294122794852896275e-16
376 return x * x * x *
Chebyshev(aa1, aa2, cheb1, ncheb1, x);
378 return Chebyshev(aa2, aa3, cheb2, ncheb2, x);
379 else if(x < 1 - 0.0000841363)
382 return y *
Chebyshev(aa4, aa5, cheb3, ncheb3, y);
387 return y *
Chebyshev(aa5, aa6, cheb4, ncheb4, y);
395 static const G4double fEnergyConst =
397 G4double Ecr = fEnergyConst * gamma * gamma * perpB / mass_c2;
402 G4double Emean = 8. / (15. * std::sqrt(3.)) * Ecr;
403 G4double E_rms = std::sqrt(211. / 675.) * Ecr;
405 G4cout <<
"G4SynchrotronRadiation::GetRandomEnergySR :" <<
'\n'
406 << std::setprecision(4) <<
" Ecr = " <<
G4BestUnit(Ecr,
"Energy")
408 <<
" Emean = " <<
G4BestUnit(Emean,
"Energy") <<
'\n'
430 <<
": Incoherent Synchrotron Radiation\n"
431 "Good description for long magnets at all energies.\n";
G4double condition(const G4ErrorSymMatrix &m)
G4double G4Log(G4double x)
static constexpr double tesla
static constexpr double eplus
static constexpr double MeV
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
Hep3Vector cross(const Hep3Vector &) const
void SetPolarization(const G4ThreeVector &)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
static G4Electron * Electron()
const G4Field * GetDetectorField() const
virtual void GetFieldValue(const G4double Point[4], G4double *fieldArr) const =0
static G4LossTableManager * Instance()
void DeRegister(G4VEnergyLossProcess *p)
void Register(G4VEnergyLossProcess *p)
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
virtual void Initialize(const G4Track &)
G4bool IsShortLived() const
G4double GetPDGMass() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4int GetModelID(const G4int modelIndex)
G4FieldManager * FindAndSetFieldManager(G4VPhysicalVolume *pCurrentPhysVol)
const G4TouchableHandle & GetTouchableHandle() const
G4StepPoint * GetPostStepPoint() const
G4LossTableManager * theManager
void SetAngularGenerator(G4VEmAngularDistribution *p)
virtual G4double GetMeanFreePath(const G4Track &track, G4double previousStepSize, G4ForceCondition *condition) override
G4SynchrotronRadiation(const G4String &pName="SynRad", G4ProcessType type=fElectromagnetic)
G4double GetRandomEnergySR(G4double, G4double, G4double)
virtual ~G4SynchrotronRadiation()
void ProcessDescription(std::ostream &) const override
G4double Chebyshev(G4double a, G4double b, const G4double c[], G4int n, G4double x)
virtual void BuildPhysicsTable(const G4ParticleDefinition &) override
virtual G4bool IsApplicable(const G4ParticleDefinition &) override
G4ParticleDefinition * theGamma
virtual G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &Step) override
G4VEmAngularDistribution * genAngle
G4PropagatorInField * fFieldPropagator
G4double InvSynFracInt(G4double x)
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPosition() const
void SetTouchableHandle(const G4TouchableHandle &apValue)
G4double GetGlobalTime() const
const G4DynamicParticle * GetDynamicParticle() const
void SetCreatorModelID(const G4int id)
void SetParentID(const G4int aValue)
static G4TransportationManager * GetTransportationManager()
G4PropagatorInField * GetPropagatorInField() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
void SetProcessSubType(G4int)
const G4String & GetProcessName() const