Geant4-11
G4FieldManager.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4FieldManager
27//
28// Class description:
29//
30// A class to manage (Store) a pointer to the Field subclass that
31// describes the field of a detector (magnetic, electric or other).
32// Also stores a reference to the chord finder.
33//
34// The G4FieldManager class exists to allow the user program to specify
35// the electric, magnetic and/or other field(s) of the detector.
36//
37// A field manager can be set to a logical volume (or to more than one),
38// in order to vary its field from that of the world. In this manner
39// a zero or constant field can override a global field, a more or
40// less exact version can override the external approximation, lower
41// or higher precision for tracking can be specified, a different
42// stepper can be chosen for different volumes, ...
43//
44// It also stores a pointer to the ChordFinder object that can do the
45// propagation in this field. All geometrical track "advancement"
46// in the field is handled by this ChordFinder object.
47//
48// G4FieldManager allows the other classes/object (of the MagneticField
49// & other class categories) to find out whether a detector field object
50// exists and what that object is.
51//
52// The Chord Finder must be created either by calling CreateChordFinder
53// for a Magnetic Field or by the user creating a a Chord Finder object
54// "manually" and setting this pointer.
55//
56// A default FieldManager is created by the singleton class
57// G4NavigatorForTracking and exists before main is called.
58// However a new one can be created and given to G4NavigatorForTracking.
59//
60// Our current design envisions that one Field manager is
61// valid for each region detector.
62//
63// It is expected that a particular geometrical region has a Field manager.
64// By default a Field Manager is created for the world volume, and
65// will be utilised for all volumes unless it is overridden by a 'local'
66// field manager.
67// Note also that a region with both electric E and magnetic B field will
68// have these treated as one field.
69// Similarly it could be extended to treat other fields as additional
70// components of a single field type.
71
72// Author: John Apostolakis, 10.03.97 - design and implementation
73// -------------------------------------------------------------------
74#ifndef G4FIELDMANAGER_HH
75#define G4FIELDMANAGER_HH 1
76
77#include "globals.hh"
78
79class G4Field;
80class G4MagneticField;
81class G4ChordFinder;
82class G4Track; // Forward reference for parameter configuration
83
85{
86 public: // with description
87
88 G4FieldManager(G4Field* detectorField = nullptr,
89 G4ChordFinder* pChordFinder = nullptr,
90 G4bool b = true ); // fieldChangesEnergy is taken from field
91 // General constructor for any field.
92 // -> Must be set with field and chordfinder for use.
93 G4FieldManager(G4MagneticField* detectorMagneticField);
94 // Creates ChordFinder
95 // -> Assumes pure magnetic field (so energy constant)
96
97 virtual ~G4FieldManager();
98
101
102 G4bool SetDetectorField(G4Field* detectorField, G4int failMode = 0);
103 // Pushes the field to the equation.
104 // Failure to push the field (due to absence of a chord finder, driver,
105 // stepper or equation) is
106 // - '0' = quiet : Do not complain if chordFinder == 0
107 // (It will still warn for other error.)
108 // - '1' = warn : a warning if anything is missing
109 // - '2'/else = FATAL : a fatal error for all other values.
110 // Returns success (true) or failure (false)
111
112 inline void ProposeDetectorField(G4Field* detectorField);
113 // Pushes the field to this class only -- no further.
114 // Should be used to initialise this field, only *before* creating
115 // the chord finder and its dependent classes.
116 // User is then responsible to ensure that:
117 // i) an equation, stepper, driver and chord finder are created
118 // ii) this field is used by the equation.
119
120 inline void ChangeDetectorField(G4Field* detectorField);
121 // Pushes the field to the equation ( & keeps its address )
122 // Can be used only once the equation, stepper, driver and chord finder
123 // have all been created. Else it is an error.
124
125 inline const G4Field* GetDetectorField() const;
126 inline G4bool DoesFieldExist() const;
127 // Set, get and check the field object
128
129 void CreateChordFinder(G4MagneticField* detectorMagField);
130 inline void SetChordFinder(G4ChordFinder* aChordFinder);
132 inline const G4ChordFinder* GetChordFinder() const;
133 // Create, set or get the associated Chord Finder
134
135 virtual void ConfigureForTrack( const G4Track * );
136 // Setup the choice of the configurable parameters
137 // relying on the current track's energy, particle identity, ..
138 // Note: in addition to the values of member variables,
139 // a user can use this to change the ChordFinder, the field, ...
140
141 public: // with description
142
144 // Accuracy for boundary intersection.
145
146 inline G4double GetDeltaOneStep() const;
147 // Accuracy for one tracking/physics step.
148
149 inline void SetAccuraciesWithDeltaOneStep(G4double valDeltaOneStep);
150 // Sets both accuracies, maintaining a fixed ratio for accuracies
151 // of volume Intersection and Integration (in One Step)
152
153 inline void SetDeltaOneStep(G4double valueD1step);
154 // Set accuracy for integration of one step. (only)
155 inline void SetDeltaIntersection(G4double valueDintersection);
156 // Set accuracy of intersection of a volume. (only)
157
159 inline void SetMinimumEpsilonStep( G4double newEpsMin );
160 // Minimum for Relative accuracy of a Step
161
163 inline void SetMaximumEpsilonStep( G4double newEpsMax );
164 // Maximum for Relative accuracy of a Step
165
167 inline void SetFieldChangesEnergy(G4bool value);
168 // For electric field this should be true
169 // For magnetic field this should be false
170
171 virtual G4FieldManager* Clone() const;
172 // Needed for multi-threading, create a clone of this object
173
174 private:
175
177 // Check whether field/equation change the energy,
178 // and sets the data member accordingly
179 // Note: does not handle special cases - this must be done
180 // separately (e.g. magnetic monopole in B field )
181
182 private:
183
186 // Dependent objects -- with state that depends on tracking
187
188 G4bool fAllocatedChordFinder = false; // Did we used "new" to
189 // create fChordFinder ?
190 // INVARIANTS of tracking ---------------------------------------
191 //
192 // 1. 'CONSTANTS' - default values for accuracy parameters
193 //
194 const G4double fEpsilonMinDefault= 5.0e-5; // Expected: 5.0e-5 to 1.0e-10 ...
195 const G4double fEpsilonMaxDefault= 1.0e-3; // Expected: 1.0e-3 to 1.0e-8 ...
196
197 static G4double fDefault_Delta_One_Step_Value; // = 0.01 * millimeter;
198 static G4double fDefault_Delta_Intersection_Val; // = 0.001 * millimeter;
199 // Default values for accuracy parameters
200
201 // 2. CHARACTERISTIC of field
202 //
204
205 // 3. PARAMETERS that determine the accuracy of integration or intersection
206 //
207 G4double fDelta_One_Step_Value; // for one tracking/physics step
208 G4double fDelta_Intersection_Val; // for boundary intersection
209 // Values for the required accuracies
210
213 // Values for the small possible relative accuracy of a step
214 // (corresponding to the greatest possible integration accuracy)
215};
216
217// Implementation of inline functions
218
219#include "G4FieldManager.icc"
220
221#endif
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4double fEpsilonMinDefault
static G4double fDefault_Delta_One_Step_Value
static G4double fDefault_Delta_Intersection_Val
G4double fEpsilonMin
void SetAccuraciesWithDeltaOneStep(G4double valDeltaOneStep)
virtual G4FieldManager * Clone() const
G4double fDelta_One_Step_Value
G4bool DoesFieldChangeEnergy() const
virtual ~G4FieldManager()
G4bool SetDetectorField(G4Field *detectorField, G4int failMode=0)
void CreateChordFinder(G4MagneticField *detectorMagField)
G4double fEpsilonMax
void SetFieldChangesEnergy(G4bool value)
void SetDeltaOneStep(G4double valueD1step)
const G4double fEpsilonMaxDefault
void SetChordFinder(G4ChordFinder *aChordFinder)
void InitialiseFieldChangesEnergy()
virtual void ConfigureForTrack(const G4Track *)
void ProposeDetectorField(G4Field *detectorField)
G4double GetMinimumEpsilonStep() const
const G4ChordFinder * GetChordFinder() const
G4FieldManager(G4Field *detectorField=nullptr, G4ChordFinder *pChordFinder=nullptr, G4bool b=true)
void SetMinimumEpsilonStep(G4double newEpsMin)
G4double GetMaximumEpsilonStep() const
G4FieldManager & operator=(const G4FieldManager &)=delete
G4double GetDeltaOneStep() const
G4bool fAllocatedChordFinder
G4Field * fDetectorField
const G4Field * GetDetectorField() const
void ChangeDetectorField(G4Field *detectorField)
G4ChordFinder * fChordFinder
void SetDeltaIntersection(G4double valueDintersection)
G4FieldManager(const G4FieldManager &)=delete
G4ChordFinder * GetChordFinder()
void SetMaximumEpsilonStep(G4double newEpsMax)
G4double GetDeltaIntersection() const
G4bool fFieldChangesEnergy
G4double fDelta_Intersection_Val
G4bool DoesFieldExist() const