Geant4-11
G4StatMFMicroCanonical.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// Hadronic Process: Nuclear De-excitations
29// by V. Lara
30
31#include <numeric>
32
35#include "G4SystemOfUnits.hh"
37#include "G4Pow.hh"
38
39// constructor
41{
42 // Perform class initialization
43 Initialize(theFragment);
44}
45
46// destructor
48{
49 // garbage collection
50 if (!_ThePartitionManagerVector.empty()) {
51 std::for_each(_ThePartitionManagerVector.begin(),
54 }
55}
56
58{
59
60 std::vector<G4StatMFMicroManager*>::iterator it;
61
62 // Excitation Energy
63 G4double U = theFragment.GetExcitationEnergy();
64
65 G4int A = theFragment.GetA_asInt();
66 G4int Z = theFragment.GetZ_asInt();
67 G4double x = 1.0 - 2.0*Z/G4double(A);
68 G4Pow* g4calc = G4Pow::GetInstance();
69
70 // Configuration temperature
71 G4double TConfiguration = std::sqrt(8.0*U/G4double(A));
72
73 // Free internal energy at Temperature T = 0
75 // Volume term (for T = 0)
77 // Symmetry term
79 ) +
80 // Surface term (for T = 0)
82 // Coulomb term
84
85 // Statistical weight
86 G4double W = 0.0;
87
88 // Mean breakup multiplicity
90
91 // Mean channel temperature
93
94 // Mean channel entropy
95 __MeanEntropy = 0.0;
96
97 // Calculate entropy of compound nucleus
98 G4double SCompoundNucleus = CalcEntropyOfCompoundNucleus(theFragment,TConfiguration);
99
100 // Statistical weight of compound nucleus
101 _WCompoundNucleus = 1.0;
102
104
105 // Maximal fragment multiplicity allowed in direct simulation
107 if (A > 110) MaxMult -= 1;
108
109 for (G4int im = 2; im <= MaxMult; im++) {
110 G4StatMFMicroManager * aMicroManager =
111 new G4StatMFMicroManager(theFragment,im,__FreeInternalE0,SCompoundNucleus);
112 _ThePartitionManagerVector.push_back(aMicroManager);
113 }
114
115 // W is the total probability
116 W = std::accumulate(_ThePartitionManagerVector.begin(),
118 W, [](const G4double& running_total,
119 G4StatMFMicroManager*& manager)
120 {
121 return running_total + manager->GetProbability();
122 } );
123
124 // Normalization of statistical weights
125 for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it)
126 {
127 (*it)->Normalize(W);
128 }
129
131
133 __MeanTemperature += TConfiguration * _WCompoundNucleus;
134 __MeanEntropy += SCompoundNucleus * _WCompoundNucleus;
135
136 for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it)
137 {
138 __MeanMultiplicity += (*it)->GetMeanMultiplicity();
139 __MeanTemperature += (*it)->GetMeanTemperature();
140 __MeanEntropy += (*it)->GetMeanEntropy();
141 }
142
143 return;
144}
145
147 G4double T)
148{
149 G4int A = theFragment.GetA_asInt();
150 G4int Z = theFragment.GetZ_asInt();
152
153 G4double InvLevelDensityPar = G4StatMFParameters::GetEpsilon0()
154 *(1.0 + 3.0/G4double(A-1));
155
156 G4double VolumeTerm = (-G4StatMFParameters::GetE0()+T*T/InvLevelDensityPar)*A;
157
159 *(A - 2*Z)*(A - 2*Z)/G4double(A);
160
161 G4double SurfaceTerm = (G4StatMFParameters::Beta(T)
163
165
166 return VolumeTerm + SymmetryTerm + SurfaceTerm + CoulombTerm;
167}
168
171 G4double & TConf)
172 // Calculates Temperature and Entropy of compound nucleus
173{
174 G4int A = theFragment.GetA_asInt();
175 G4double U = theFragment.GetExcitationEnergy();
177
178 G4double Ta = std::max(std::sqrt(U/(0.125*A)),0.0012*MeV);
179 G4double Tb = Ta;
180
181 G4double ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Ta);
182 G4double Da = (U+__FreeInternalE0-ECompoundNucleus)/U;
183 G4double Db = 0.0;
184
185 G4double InvLevelDensity = CalcInvLevelDensity(A);
186
187 // bracketing the solution
188 if (Da == 0.0) {
189 TConf = Ta;
190 return 2*Ta*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Ta)*A13*A13;
191 } else if (Da < 0.0) {
192 do {
193 Tb -= 0.5*Tb;
194 ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tb);
195 Db = (U+__FreeInternalE0-ECompoundNucleus)/U;
196 } while (Db < 0.0);
197 } else {
198 do {
199 Tb += 0.5*Tb;
200 ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tb);
201 Db = (U+__FreeInternalE0-ECompoundNucleus)/U;
202 } while (Db > 0.0);
203 }
204
205 G4double eps = 1.0e-14 * std::abs(Tb-Ta);
206
207 for (G4int i = 0; i < 1000; i++) {
208 G4double Tc = (Ta+Tb)*0.5;
209 if (std::abs(Ta-Tb) <= eps) {
210 TConf = Tc;
211 return 2*Tc*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Tc)*A13*A13;
212 }
213 ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tc);
214 G4double Dc = (U+__FreeInternalE0-ECompoundNucleus)/U;
215
216 if (Dc == 0.0) {
217 TConf = Tc;
218 return 2*Tc*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Tc)*A13*A13;
219 }
220
221 if (Da*Dc < 0.0) {
222 Tb = Tc;
223 Db = Dc;
224 } else {
225 Ta = Tc;
226 Da = Dc;
227 }
228 }
229
230 G4cout <<
231 "G4StatMFMicrocanoncal::CalcEntropyOfCompoundNucleus: I can't calculate the temperature"
232 << G4endl;
233
234 return 0.0;
235}
236
238 // Choice of fragment atomic numbers and charges
239{
240 // We choose a multiplicity (1,2,3,...) and then a channel
241 G4double RandNumber = G4UniformRand();
242
243 if (RandNumber < _WCompoundNucleus) {
244
245 G4StatMFChannel * aChannel = new G4StatMFChannel;
246 aChannel->CreateFragment(theFragment.GetA_asInt(),theFragment.GetZ_asInt());
247 return aChannel;
248
249 } else {
250
251 G4double AccumWeight = _WCompoundNucleus;
252 std::vector<G4StatMFMicroManager*>::iterator it;
253 for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it) {
254 AccumWeight += (*it)->GetProbability();
255 if (RandNumber < AccumWeight) {
256 return (*it)->ChooseChannel(theFragment.GetA_asInt(),theFragment.GetZ_asInt(),__MeanTemperature);
257 }
258 }
259 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::ChooseAandZ: wrong normalization!");
260 }
261
262 return 0;
263}
264
266{
267 G4double res = 0.0;
268 if (anA > 1) {
269 res = G4StatMFParameters::GetEpsilon0()*(1.0+3.0/(anA - 1.0));
270 }
271 return res;
272}
static const G4double eps
#define A13
static constexpr double MeV
Definition: G4SIunits.hh:200
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:299
G4int GetZ_asInt() const
Definition: G4Fragment.hh:276
G4int GetA_asInt() const
Definition: G4Fragment.hh:271
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double Z13(G4int Z) const
Definition: G4Pow.hh:123
G4double Z23(G4int Z) const
Definition: G4Pow.hh:125
void CreateFragment(G4int A, G4int Z)
G4StatMFChannel * ChooseAandZ(const G4Fragment &theFragment)
G4double CalcEntropyOfCompoundNucleus(const G4Fragment &theFragment, G4double &TConf)
void Initialize(const G4Fragment &theFragment)
G4double CalcFreeInternalEnergy(const G4Fragment &theFragment, G4double T)
G4double CalcInvLevelDensity(G4int anA)
std::vector< G4StatMFMicroManager * > _ThePartitionManagerVector
static G4double DBetaDT(G4double T)
static G4double GetBeta0()
static G4double GetE0()
static G4double GetGamma0()
static G4double Beta(G4double T)
static G4double Getr0()
static G4double GetEpsilon0()
T max(const T t1, const T t2)
brief Return the largest of the two arguments
int elm_coupling
Definition: hepunit.py:285