Geant4-11
G4StatMFParameters.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// Hadronic Process: Nuclear De-excitations
29// by V. Lara
30
31
32#include "G4StatMFParameters.hh"
33#include "G4SystemOfUnits.hh"
35
36const G4double G4StatMFParameters::fKappa = 1.0; // dimensionless
37
38const G4double G4StatMFParameters::fKappaCoulomb = 2.0; // dimensionless
39
41
42// Bethe-Weizsacker coefficients
44
46
48
49// Critical temperature (for liquid-gas phase transitions)
51
52// Nuclear radius
54
56 (1.0 - 1.0/std::pow(1.0+fKappaCoulomb,1./3.));
57
59{}
60
62{}
63
65{
66 return fKappa;
67}
68
70{
71 return fKappaCoulomb;
72}
73
75{
76 return fEpsilon0;
77}
78
80{
81 return fE0;
82}
83
85{
86 return fBeta0;
87}
88
90{
91 return fGamma0;
92}
93
95{
96 return fCriticalTemp;
97}
98
100{
101 return fr0;
102}
103
105{
106 return fCoulomb;
107}
108
110{
111 G4double res = 0.0;
112 if (T < fCriticalTemp) {
113 G4double CriticalTempSqr = fCriticalTemp*fCriticalTemp;
114 G4double TempSqr = T*T;
115 G4double tmp = (CriticalTempSqr-TempSqr)/(CriticalTempSqr+TempSqr);
116
117 res = fBeta0*tmp*std::pow(tmp,0.25);
118 }
119 return res;
120}
121
123{
124 G4double res = 0.0;
125 if (T < fCriticalTemp) {
126 G4double CriticalTempSqr = fCriticalTemp*fCriticalTemp;
127 G4double TempSqr = T*T;
128 G4double tmp = (CriticalTempSqr-TempSqr)/(CriticalTempSqr+TempSqr);
129
130 res = -5.0*fBeta0*std::pow(tmp,0.25)*(CriticalTempSqr*T)/
131 ((CriticalTempSqr+TempSqr)*(CriticalTempSqr+TempSqr));
132 }
133 return res;
134}
135
138{
139 // Maximun average multiplicity: M_0 = 2.6 for A ~ 200
140 // and M_0 = 3.3 for A <= 110
141 G4double MaxAverageMultiplicity = 2.6;
142 if (A <= 110) { MaxAverageMultiplicity = 3.3; }
143 return MaxAverageMultiplicity;
144}
145
static constexpr double fermi
Definition: G4SIunits.hh:83
static constexpr double MeV
Definition: G4SIunits.hh:200
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4double A[17]
static G4double GetMaxAverageMultiplicity(G4int A)
static G4double DBetaDT(G4double T)
static const G4double fE0
static const G4double fKappaCoulomb
static const G4double fr0
static G4double GetBeta0()
static G4double GetKappa()
static G4double GetE0()
static const G4double fBeta0
static G4double GetGamma0()
static G4double Beta(G4double T)
static G4double GetCoulomb()
static const G4double fCriticalTemp
static const G4double fGamma0
static G4double Getr0()
static const G4double fEpsilon0
static G4double GetKappaCoulomb()
static G4double GetCriticalTemp()
static G4double GetEpsilon0()
static const G4double fCoulomb
static const G4double fKappa
static constexpr double elm_coupling