Geant4-11
G4ParticleHPCaptureData.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29//
30// 070523 add neglecting doppler broadening on the fly. T. Koi
31// 070613 fix memory leaking by T. Koi
32// 071002 enable cross section dump by T. Koi
33// 080428 change checking point of "neglecting doppler broadening" flag
34// from GetCrossSection to BuildPhysicsTable by T. Koi
35// 081024 G4NucleiPropertiesTable:: to G4NucleiProperties::
36//
37// P. Arce, June-2014 Conversion neutron_hp to particle_hp
38//
42#include "G4SystemOfUnits.hh"
43#include "G4Neutron.hh"
44#include "G4ElementTable.hh"
45#include "G4ParticleHPData.hh"
47#include "G4Threading.hh"
49#include "G4Pow.hh"
50
52:G4VCrossSectionDataSet("NeutronHPCaptureXS")
53{
54 SetMinKinEnergy( 0*MeV );
55 SetMaxKinEnergy( 20*MeV );
56
58
59 instanceOfWorker = false;
61 instanceOfWorker = true;
62 }
63
64 element_cache = NULL;
65 material_cache = NULL;
66 ke_cache = 0.0;
67 xs_cache = 0.0;
68
69 //BuildPhysicsTable(*G4Neutron::Neutron());
70}
71
73{
74 if ( theCrossSections != NULL && instanceOfWorker != true ) {
76 delete theCrossSections;
77 theCrossSections = NULL;
78 }
79}
80
82 G4int /*Z*/ , G4int /*A*/ ,
83 const G4Element* /*elm*/ ,
84 const G4Material* /*mat*/ )
85{
86 G4double eKin = dp->GetKineticEnergy();
87 if ( eKin > GetMaxKinEnergy()
88 || eKin < GetMinKinEnergy()
89 || dp->GetDefinition() != G4Neutron::Neutron() ) return false;
90
91 return true;
92}
93
95 G4int /*Z*/ , G4int /*A*/ ,
96 const G4Isotope* /*iso*/ ,
97 const G4Element* element ,
98 const G4Material* material )
99{
100 if ( dp->GetKineticEnergy() == ke_cache && element == element_cache && material == material_cache ) return xs_cache;
101
103 element_cache = element;
105 G4double xs = GetCrossSection( dp , element , material->GetTemperature() );
106 xs_cache = xs;
107 return xs;
108}
109
110/*
111G4bool G4ParticleHPCaptureData::IsApplicable(const G4DynamicParticle*aP, const G4Element*)
112{
113 G4bool result = true;
114 G4double eKin = aP->GetKineticEnergy();
115 if(eKin>20*MeV||aP->GetDefinition()!=G4Neutron::Neutron()) result = false;
116 return result;
117}
118*/
119
121{
122 if(&aP!=G4Neutron::Neutron())
123 throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!");
124
127 return;
128 }
129
130 size_t numberOfElements = G4Element::GetNumberOfElements();
131 // G4cout << "CALLED G4ParticleHPCaptureData::BuildPhysicsTable "<<numberOfElements<<G4endl;
132 // TKDB
133 //if ( theCrossSections == 0 ) theCrossSections = new G4PhysicsTable( numberOfElements );
134 if ( theCrossSections == NULL )
135 theCrossSections = new G4PhysicsTable( numberOfElements );
136 else
138
139 // make a PhysicsVector for each element
140
141 static G4ThreadLocal G4ElementTable *theElementTable = 0 ; if (!theElementTable) theElementTable= G4Element::GetElementTable();
142 for( size_t i=0; i<numberOfElements; ++i )
143 {
144 #ifdef G4VERBOSE
145 if(std::getenv("CaptureDataIndexDebug"))
146 {
147 G4int index_debug = ((*theElementTable)[i])->GetIndex();
148 if ( G4HadronicParameters::Instance()->GetVerboseLevel() > 0 ) G4cout << "IndexDebug "<< i <<" "<<index_debug<<G4endl;
149 }
150 #endif
152 Instance(G4Neutron::Neutron())->MakePhysicsVector((*theElementTable)[i], this);
153 theCrossSections->push_back(physVec);
154 }
155
157}
158
160{
161 if(&aP!=G4Neutron::Neutron())
162 throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!");
163
164 #ifdef G4VERBOSE
165 if ( G4HadronicParameters::Instance()->GetVerboseLevel() == 0 ) return;
166
167//
168// Dump element based cross section
169// range 10e-5 eV to 20 MeV
170// 10 point per decade
171// in barn
172//
173
174 G4cout << G4endl;
175 G4cout << G4endl;
176 G4cout << "Capture Cross Section of Neutron HP"<< G4endl;
177 G4cout << "(Pointwise cross-section at 0 Kelvin.)" << G4endl;
178 G4cout << G4endl;
179 G4cout << "Name of Element" << G4endl;
180 G4cout << "Energy[eV] XS[barn]" << G4endl;
181 G4cout << G4endl;
182
183 size_t numberOfElements = G4Element::GetNumberOfElements();
184 static G4ThreadLocal G4ElementTable *theElementTable = 0 ; if (!theElementTable) theElementTable= G4Element::GetElementTable();
185
186 for ( size_t i = 0 ; i < numberOfElements ; ++i )
187 {
188
189 G4cout << (*theElementTable)[i]->GetName() << G4endl;
190
191 G4int ie = 0;
192
193 for ( ie = 0 ; ie < 130 ; ie++ )
194 {
195 G4double eKinetic = 1.0e-5 * G4Pow::GetInstance()->powA ( 10.0 , ie/10.0 ) *eV;
196 G4bool outOfRange = false;
197
198 if ( eKinetic < 20*MeV )
199 {
200 G4cout << eKinetic/eV << " " << (*((*theCrossSections)(i))).GetValue(eKinetic, outOfRange)/barn << G4endl;
201 }
202
203 }
204
205 G4cout << G4endl;
206 }
207
208 //G4cout << "G4ParticleHPCaptureData::DumpPhysicsTable still to be implemented"<<G4endl;
209 #endif
210}
211
212#include "G4NucleiProperties.hh"
213
215GetCrossSection(const G4DynamicParticle* aP, const G4Element*anE, G4double aT)
216{
217 G4double result = 0;
218 G4bool outOfRange;
219 G4int index = anE->GetIndex();
220
221 // prepare neutron
222 G4double eKinetic = aP->GetKineticEnergy();
223
224 if ( G4ParticleHPManager::GetInstance()->GetNeglectDoppler() )
225 {
226 //NEGLECT_DOPPLER
227 G4double factor = 1.0;
228 if ( eKinetic < aT * k_Boltzmann )
229 {
230 // below 0.1 eV neutrons
231 // Have to do some, but now just igonre.
232 // Will take care after performance check.
233 // factor = factor * targetV;
234 }
235 return ( (*((*theCrossSections)(index))).GetValue(eKinetic, outOfRange) )* factor;
236 }
237
238 G4ReactionProduct theNeutron( aP->GetDefinition() );
239 theNeutron.SetMomentum( aP->GetMomentum() );
240 theNeutron.SetKineticEnergy( eKinetic );
241
242 // prepare thermal nucleus
243 G4Nucleus aNuc;
244 G4double eps = 0.0001;
245 G4double theA = anE->GetN();
246 G4double theZ = anE->GetZ();
247 G4double eleMass;
248 eleMass = G4NucleiProperties::GetNuclearMass( static_cast<G4int>(theA+eps) , static_cast<G4int>(theZ+eps) ) / G4Neutron::Neutron()->GetPDGMass();
249
250 G4ReactionProduct boosted;
251 G4double aXsection;
252
253 // MC integration loop
254 G4int counter = 0;
255 G4double buffer = 0;
256 G4int size = G4int(std::max(10., aT/60*kelvin));
257 G4ThreeVector neutronVelocity = 1./G4Neutron::Neutron()->GetPDGMass()*theNeutron.GetMomentum();
258 G4double neutronVMag = neutronVelocity.mag();
259
260 while(counter == 0 || std::abs(buffer-result/std::max(1,counter)) > 0.03*buffer) // Loop checking, 11.05.2015, T. Koi
261 {
262 if(counter) buffer = result/counter;
263 while (counter<size) // Loop checking, 11.05.2015, T. Koi
264 {
265 counter ++;
266 G4ReactionProduct aThermalNuc = aNuc.GetThermalNucleus(eleMass, aT);
267 boosted.Lorentz(theNeutron, aThermalNuc);
268 G4double theEkin = boosted.GetKineticEnergy();
269 aXsection = (*((*theCrossSections)(index))).GetValue(theEkin, outOfRange);
270 // velocity correction, or luminosity factor...
271 G4ThreeVector targetVelocity = 1./aThermalNuc.GetMass()*aThermalNuc.GetMomentum();
272 aXsection *= (targetVelocity-neutronVelocity).mag()/neutronVMag;
273 result += aXsection;
274 }
275 size += size;
276 }
277 result /= counter;
278/*
279 // Checking impact of G4NEUTRONHP_NEGLECT_DOPPLER
280 G4cout << " result " << result << " "
281 << (*((*theCrossSections)(index))).GetValue(eKinetic, outOfRange) << " "
282 << (*((*theCrossSections)(index))).GetValue(eKinetic, outOfRange) /result << G4endl;
283*/
284 return result;
285}
286
288{
290}
292{
294}
296{
297 outFile << "High Precision cross data based on Evaluated Nuclear Data Files (ENDF) for radiative capture reaction of neutrons below 20MeV\n" ;
298}
static const G4double eps
std::vector< G4Element * > G4ElementTable
static constexpr double kelvin
Definition: G4SIunits.hh:274
static constexpr double barn
Definition: G4SIunits.hh:85
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double MeV
Definition: G4SIunits.hh:200
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double mag() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
static G4ElementTable * GetElementTable()
Definition: G4Element.cc:397
G4double GetZ() const
Definition: G4Element.hh:131
static size_t GetNumberOfElements()
Definition: G4Element.cc:404
size_t GetIndex() const
Definition: G4Element.hh:182
G4double GetN() const
Definition: G4Element.hh:135
static G4HadronicParameters * Instance()
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4ReactionProduct GetThermalNucleus(G4double aMass, G4double temp=-1) const
Definition: G4Nucleus.cc:236
virtual void CrossSectionDescription(std::ostream &) const
G4double GetIsoCrossSection(const G4DynamicParticle *, G4int, G4int, const G4Isotope *, const G4Element *, const G4Material *)
G4bool IsIsoApplicable(const G4DynamicParticle *, G4int, G4int, const G4Element *, const G4Material *)
G4double GetCrossSection(const G4DynamicParticle *, const G4Element *, G4double aT)
void DumpPhysicsTable(const G4ParticleDefinition &)
void BuildPhysicsTable(const G4ParticleDefinition &)
static G4ParticleHPData * Instance(G4ParticleDefinition *projectile)
G4PhysicsVector * MakePhysicsVector(G4Element *thE, G4ParticleHPFissionData *theP)
G4PhysicsTable * GetCaptureCrossSections()
void RegisterCaptureCrossSections(G4PhysicsTable *val)
static G4ParticleHPManager * GetInstance()
void push_back(G4PhysicsVector *)
void clearAndDestroy()
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
void SetMaxKinEnergy(G4double value)
void SetMinKinEnergy(G4double value)
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4bool IsWorkerThread()
Definition: G4Threading.cc:123
string material
Definition: eplot.py:19
float k_Boltzmann
Definition: hepunit.py:298
#define G4ThreadLocal
Definition: tls.hh:77
#define buffer
Definition: xmlparse.cc:628