103 outFile <<
"G4NeutronElectronElModel is a neutrino-electron (neutral current) elastic scattering\n"
104 <<
"model which uses the standard model \n"
105 <<
"transfer parameterization. The model is fully relativistic\n";
122 G4double result = 0., sum, Tkin, dt, t1, t2;
123 G4int iTkin, jTransfer;
138 for( jTransfer = 0; jTransfer <
fAngleBin; jTransfer++)
147 vectorT->
PutValue(jTransfer, t1, sum);
162 G4int iTkin, iTransfer;
166 if( Tkin < fEnergyVector->Energy(iTkin) )
break;
169 if ( iTkin < 0 ) iTkin = 0;
175 for( iTransfer = 0; iTransfer <
fAngleBin; iTransfer++)
198 if( iTransfer == 0 || iTransfer ==
fAngleBin-1 )
200 randTransfer = (*fAngleTable)(iTkin)->Energy(iTransfer);
206 iTransfer = (*fAngleTable)(iTkin)->GetVectorLength() - 1;
208 y1 = (*(*fAngleTable)(iTkin))(iTransfer-1);
209 y2 = (*(*fAngleTable)(iTkin))(iTransfer);
211 x1 = (*fAngleTable)(iTkin)->Energy(iTransfer-1);
212 x2 = (*fAngleTable)(iTkin)->Energy(iTransfer);
217 if ( x1 == x2 ) randTransfer = x2;
226 randTransfer = x1 + (
position - y1 )*( x2 - x1 )/delta;
241 G4double result = 1., q2, znq2, znf, znf2, znf4;
243 znq2 = 1. + 2.*
fee*x/
fM;
251 result /= ( x +
fAm )*znq2*znq2*znf4;
253 result *= ( 1 - x )/( 1 + q2/4./
fM2 ) + 2.*x;
286 eTkin /= 1.+2.*
fee*sin2ht/
fM;
300 if( cost > 1. ) cost = 1.;
301 if( cost < -1. ) cost = -1.;
303 G4double sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
306 G4ThreeVector eP( sint*std::cos(phi), sint*std::sin(phi), cost );
330 else if( eTkin > 0.0 )
G4double epsilon(G4double density, G4double temperature)
static constexpr double eV
static constexpr double GeV
static constexpr double MeV
static constexpr double TeV
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
static G4Electron * Electron()
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
void SetLocalEnergyDeposit(G4double aE)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4double LowestEnergyLimit() const
void SetLowestEnergyLimit(G4double value)
G4HadFinalState theParticleChange
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
virtual void ModelDescription(std::ostream &) const
G4double SampleSin2HalfTheta(G4double Tkin)
G4double CalculateAm(G4double momentum)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4PhysicsLogVector * fEnergyVector
G4NeutronElectronElModel(const G4String &name="n-e-elastic")
G4ParticleDefinition * theElectron
G4PhysicsTable * fAngleTable
virtual ~G4NeutronElectronElModel()
G4double XscIntegrand(G4double x)
virtual G4bool IsApplicable(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double GetTransfer(G4int iTkin, G4int iTransfer, G4double position)
G4double GetPDGMass() const
const G4String & GetParticleName() const
void PutValue(const std::size_t index, const G4double e, const G4double value)
static G4int GetModelID(const G4int modelIndex)
void insertAt(std::size_t, G4PhysicsVector *)
G4double GetLowEdgeEnergy(const std::size_t index) const
static constexpr double twopi
G4double energy(const ThreeVector &p, const G4double m)
const char * name(G4int ptype)