Geant4-11
G4MicroElecElasticModel_new.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// G4MicroElecElasticModel_new.cc, 2011/08/29 A.Valentin, M. Raine are with CEA [a]
28// 2020/05/20 P. Caron, C. Inguimbert are with ONERA [b]
29// Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
30// M. Raine and D. Lambert are with CEA [a]
31//
32// A part of this work has been funded by the French space agency(CNES[c])
33// [a] CEA, DAM, DIF - 91297 ARPAJON, France
34// [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
35// [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
36//
37// Based on the following publications
38// - A.Valentin, M. Raine,
39// Inelastic cross-sections of low energy electrons in silicon
40// for the simulation of heavy ion tracks with the Geant4-DNA toolkit,
41// NSS Conf. Record 2010, pp. 80-85
42// https://doi.org/10.1109/NSSMIC.2010.5873720
43//
44// - A.Valentin, M. Raine, M.Gaillardin, P.Paillet
45// Geant4 physics processes for microdosimetry simulation:
46// very low energy electromagnetic models for electrons in Silicon,
47// https://doi.org/10.1016/j.nimb.2012.06.007
48// NIM B, vol. 288, pp. 66-73, 2012, part A
49// heavy ions in Si, NIM B, vol. 287, pp. 124-129, 2012, part B
50// https://doi.org/10.1016/j.nimb.2012.07.028
51//
52// - M. Raine, M. Gaillardin, P. Paillet
53// Geant4 physics processes for silicon microdosimetry simulation:
54// Improvements and extension of the energy-range validity up to 10 GeV/nucleon
55// NIM B, vol. 325, pp. 97-100, 2014
56// https://doi.org/10.1016/j.nimb.2014.01.014
57//
58// - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
59// Electron emission yield for low energy electrons:
60// Monte Carlo simulation and experimental comparison for Al, Ag, and Si
61// Journal of Applied Physics 121 (2017) 215107.
62// https://doi.org/10.1063/1.4984761
63//
64// - P. Caron,
65// Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
66// PHD, 16th October 2019
67//
68// - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech,
69// Geant4 physics processes for microdosimetry and secondary electron emission simulation :
70// Extension of MicroElec to very low energies and new materials
71// NIM B, 2020, in review.
72//
73//
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
77#include "G4SystemOfUnits.hh"
78#include "G4Exp.hh"
79#include "G4Material.hh"
80#include "G4String.hh"
81
82//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
83
84using namespace std;
85
86//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
87
89 const G4String& nam)
90 :G4VEmModel(nam), isInitialised(false)
91{
92 killBelowEnergy = 0.1*eV; // Minimum e- energy for energy loss by excitation
93 lowEnergyLimit = 0.1 * eV;
94 lowEnergyLimitOfModel = 10 * eV; // The model lower energy is 10 eV
95 highEnergyLimit = 500. * keV;
98
99 verboseLevel= 0;
100 // Verbosity scale:
101 // 0 = nothing
102 // 1 = warning for energy non-conservation
103 // 2 = details of energy budget
104 // 3 = calculation of cross sections, file openings, sampling of atoms
105 // 4 = entering in methods
106
107 if( verboseLevel>0 )
108 {
109 G4cout << "MicroElec Elastic model is constructed " << G4endl
110 << "Energy range: "
111 << lowEnergyLimit / eV << " eV - "
112 << highEnergyLimit / MeV << " MeV"
113 << G4endl;
114 }
116
117 killElectron = false;
118 acousticModelEnabled = false;
120 isOkToBeInitialised = false;
121}
122
123//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
124
126{
127 // For total cross section
128 TCSMap::iterator pos2;
129 for (pos2 = tableTCS.begin(); pos2 != tableTCS.end(); ++pos2) {
130 MapData* tableData = pos2->second;
131 std::map< G4String, G4MicroElecCrossSectionDataSet_new*, std::less<G4String> >::iterator pos;
132 for (pos = tableData->begin(); pos != tableData->end(); ++pos)
133 {
135 delete table;
136 }
137 delete tableData;
138 }
139
140 //Clearing DCS maps
141
142 ThetaMap::iterator iterator_angle;
143 for (iterator_angle = thetaDataStorage.begin(); iterator_angle != thetaDataStorage.end(); ++iterator_angle) {
144 TriDimensionMap* eDiffCrossSectionData = iterator_angle->second;
145 eDiffCrossSectionData->clear();
146 delete eDiffCrossSectionData;
147 }
148
149 energyMap::iterator iterator_energy;
150 for (iterator_energy = eIncidentEnergyStorage.begin(); iterator_energy != eIncidentEnergyStorage.end(); ++iterator_energy) {
151 std::vector<G4double>* eTdummyVec = iterator_energy->second;
152 eTdummyVec->clear();
153 delete eTdummyVec;
154 }
155
156 ProbaMap::iterator iterator_proba;
157 for (iterator_proba = eProbaStorage.begin(); iterator_proba != eProbaStorage.end(); ++iterator_proba) {
158 VecMap* eVecm = iterator_proba->second;
159 eVecm->clear();
160 delete eVecm;
161 }
162
163}
164
165//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
166
168 const G4DataVector& /*cuts*/)
169{
170 if (isOkToBeInitialised == true && isInitialised == false) {
171
172 if (verboseLevel > -1)
173 G4cout << "Calling G4MicroElecElasticModel_new::Initialise()" << G4endl;
174 // Energy limits
175 // Reading of data files
176
177 G4double scaleFactor = 1e-18 * cm * cm;
178
179 G4ProductionCutsTable* theCoupleTable =
181 G4int numOfCouples = theCoupleTable->GetTableSize();
182
183 for (G4int i = 0; i < numOfCouples; ++i) {
184 const G4Material* material =
185 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
186
187 //theCoupleTable->GetMaterialCutsCouple(i)->;
188
189 G4cout << "MicroElasticModel, Material " << i + 1 << " / " << numOfCouples << " : " << material->GetName() << G4endl;
190 if (material->GetName() == "Vacuum") continue;
191
192 G4String matName = material->GetName().substr(3, material->GetName().size());
193 G4cout<< matName<< G4endl;
194
199
201
202 G4cout << "Reading TCS file" << G4endl;
203 G4String fileElectron = "Elastic/elsepa_elastic_cross_e_" + matName;
204 G4cout << "Elastic Total Cross file : " << fileElectron << G4endl;
205
207 G4String electron = electronDef->GetParticleName();
208
209 // For total cross section
210 MapData* tableData = new MapData();
211
213 tableE->LoadData(fileElectron);
214 tableData->insert(make_pair(electron, tableE));
215 tableTCS[matName] = tableData; //Storage of TCS
216
217 // For final state
218 char *path = std::getenv("G4LEDATA");
219 if (!path)
220 {
221 G4Exception("G4MicroElecElasticModel_new::Initialise","em0006",FatalException,"G4LEDATA environment variable not set.");
222 return;
223 }
224
225 //Reading DCS file
226 std::ostringstream eFullFileName;
227 eFullFileName << path << "/microelec/Elastic/elsepa_elastic_cumulated_diffcross_e_" + matName + ".dat";
228 G4cout << "Elastic Cumulated Diff Cross : " << eFullFileName.str().c_str() << G4endl;
229 std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
230
231 if (!eDiffCrossSection)
232 G4Exception("G4MicroElecElasticModel_new::Initialise", "em0003", FatalException, "Missing data file: /microelec/sigmadiff_cumulated_elastic_e_Si.dat");
233
234 // October 21th, 2014 - Melanie Raine
235 // Added clear for MT
236 // Diff Cross Sections in cumulated mode
237 TriDimensionMap* eDiffCrossSectionData = new TriDimensionMap(); //Angles
238 std::vector<G4double>* eTdummyVec = new std::vector<G4double>; //Incident energy vector
239 VecMap* eProbVec = new VecMap; //Probabilities
240
241 eTdummyVec->push_back(0.);
242
243 while (!eDiffCrossSection.eof())
244 {
245 G4double tDummy; //incident energy
246 G4double eProb; //Proba
247 eDiffCrossSection >> tDummy >> eProb;
248
249 // SI : mandatory eVecm initialization
250 if (tDummy != eTdummyVec->back())
251 {
252 eTdummyVec->push_back(tDummy); //adding values for incident energy points
253 (*eProbVec)[tDummy].push_back(0.); //adding probability for the first angle, equal to 0
254 }
255
256 eDiffCrossSection >> (*eDiffCrossSectionData)[tDummy][eProb]; //adding Angle Value to map
257
258 if (eProb != (*eProbVec)[tDummy].back()) {
259 (*eProbVec)[tDummy].push_back(eProb); //Adding cumulated proba to map
260 }
261
262 }
263
264 //Filling maps for the material
265 thetaDataStorage[matName] = eDiffCrossSectionData;
266 eIncidentEnergyStorage[matName] = eTdummyVec;
267 eProbaStorage[matName] = eProbVec;
268 }
269 // End final state
270
271 if (verboseLevel > 2)
272 G4cout << "Loaded cross section files for MicroElec Elastic model" << G4endl;
273
274 if (verboseLevel > 0)
275 {
276 G4cout << "MicroElec Elastic model is initialized " << G4endl
277 << "Energy range: "
278 << LowEnergyLimit() / eV << " eV - "
279 << HighEnergyLimit() / MeV << " MeV"
280 << G4endl; // system("pause"); linux doesn't like
281 }
282
283 if (isInitialised) { return; }
285 isInitialised = true;
286 }
287}
288
289//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
290
292 const G4ParticleDefinition* p,
293 G4double ekin,
294 G4double,
295 G4double)
296{
297 if (verboseLevel > 3)
298 G4cout << "Calling CrossSectionPerVolume() of G4MicroElecElasticModel" << G4endl;
299
300 isOkToBeInitialised = true;
301 currentMaterialName = material->GetName().substr(3, material->GetName().size());
302 const G4DataVector cuts;
303 Initialise(p, cuts);
304 // Calculate total cross section for model
305 MapEnergy::iterator lowEPos;
307
308 MapEnergy::iterator highEPos;
310
311 MapEnergy::iterator killEPos;
312 killEPos = workFunctionTable.find(currentMaterialName);
313
314 if (lowEPos == lowEnergyLimitTable.end() || highEPos == highEnergyLimitTable.end() || killEPos == workFunctionTable.end())
315 {
316 G4String str = "Material ";
317 str += currentMaterialName + " not found!";
318 G4Exception("G4MicroElecElasticModel_new::EnergyLimits", "em0002", FatalException, str);
319 return 0;
320 }
321 else {
322 // G4cout << "normal elastic " << G4endl;
323 lowEnergyLimit = lowEPos->second;
324 highEnergyLimit = highEPos->second;
325 killBelowEnergy = killEPos->second;
326
327 }
328
329 if (ekin < killBelowEnergy) {
330
331 return DBL_MAX; }
332
333 G4double sigma=0;
334
335 //Phonon for SiO2
336 if (currentMaterialName == "SILICON_DIOXIDE" && ekin < 100 * eV) {
338
339 //Values for SiO2
340 G4double kbz = 11.54e9,
341 rho = 2.2 * 1000, // [g/cm3] * 1000
342 cs = 3560, //Sound speed
343 Ebz = 5.1 * 1.6e-19,
344 Aac = 17 * Ebz, //A screening parameter
345 Eac = 3.5 * 1.6e-19, //C deformation potential
346 prefactor = 2.2;// Facteur pour modifier les MFP
347
348 return AcousticCrossSectionPerVolume(ekin, kbz, rho, cs, Aac, Eac, prefactor);
349 }
350
351 //Elastic
352 else {
353 acousticModelEnabled = false;
354
355 G4double density = material->GetTotNbOfAtomsPerVolume();
356 const G4String& particleName = p->GetParticleName();
357
358 TCSMap::iterator tablepos;
359 tablepos = tableTCS.find(currentMaterialName);
360
361 if (tablepos != tableTCS.end())
362 {
363 MapData* tableData = tablepos->second;
364
365 if (ekin >= lowEnergyLimit && ekin < highEnergyLimit)
366 {
367 std::map< G4String, G4MicroElecCrossSectionDataSet_new*, std::less<G4String> >::iterator pos;
368 pos = tableData->find(particleName);
369
370 if (pos != tableData->end())
371 {
373 if (table != 0)
374 {
375 sigma = table->FindValue(ekin);
376 }
377 }
378 else
379 {
380 G4Exception("G4MicroElecElasticModel_new::ComputeCrossSectionPerVolume", "em0002", FatalException, "Model not applicable to particle type.");
381 }
382 }
383 else return 1 / DBL_MAX;
384 }
385 else
386 {
387 G4String str = "Material ";
388 str += currentMaterialName + " TCS table not found!";
389 G4Exception("G4MicroElecElasticModel_new::ComputeCrossSectionPerVolume", "em0002", FatalException, str);
390 }
391
392 if (verboseLevel > 3)
393 {
394 G4cout << "---> Kinetic energy(eV)=" << ekin / eV << G4endl;
395 G4cout << " - Cross section per Si atom (cm^2)=" << sigma / cm / cm << G4endl;
396 G4cout << " - Cross section per Si atom (cm^-1)=" << sigma*density / (1. / cm) << G4endl;
397 }
398 return sigma*density;
399 }
400}
401
402//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
403
405 G4double kbz,
406 G4double rho,
407 G4double cs,
408 G4double Aac,
409 G4double Eac,
410 G4double prefactor)
411{
412
413 G4double e = 1.6e-19,
414 m0 = 9.10938356e-31,
415 h = 1.0546e-34,
416 kb = 1.38e-23;
417
418 G4double E = (ekin / eV) * e;
419 G4double D = (2 / (std::sqrt(2) * std::pow(pi, 2) * std::pow(h, 3))) * (1 + 2 * E) * std::pow(m0, 1.5) * std::sqrt(E);
420
421 // Parametres SiO2
422 G4double T = 300,
423 Ebz = (std::pow(h, 2) * std::pow(kbz, 2)) / (2 * m0),
424 hwbz = cs * kbz * h,
425 nbz = 1.0 / (exp(hwbz / (kb * T)) - 1),
426 Pac;
427
428 if (E < Ebz / 4.0)
429 {
430 Pac = ((pi * kb * T) / (h * std::pow(cs, 2) * rho)) * (std::pow(Eac, 2) * D) / (1 + (E / Aac));
431 }
432
433 else if (E > Ebz) //Screened relationship
434 {
435 Pac = ((2 * pi * m0 * (2 * nbz + 1)) / (h * rho * hwbz)) * std::pow(Eac, 2) * D * E * 2 * std::pow((Aac / E), 2) * (((-E / Aac) / (1 + (E / Aac))) + log(1 + (E / Aac)));
436 }
437 else //Linear interpolation
438 {
439 G4double fEbz = ((2 * pi * m0 * (2 * nbz + 1)) / (h * rho * hwbz)) * std::pow(Eac, 2) * D * Ebz * 2 * std::pow((Aac / Ebz), 2) * (((-Ebz / Aac) / (1 + (Ebz / Aac))) + log(1 + (Ebz / Aac)));
440 G4double fEbz4 = ((pi * kb * T) / (h * std::pow(cs, 2) * rho)) * (std::pow(Eac, 2) * D) / (1 + ((Ebz / 4) / Aac));
441 G4double alpha = ((fEbz - fEbz4) / (Ebz - (Ebz / 4)));
442 Pac = alpha * E + (fEbz - alpha * Ebz);
443 }
444
445 G4double MFP = (std::sqrt(2 * E / m0) / (prefactor * Pac)) * m;
446
447 return 1 / MFP;
448}
449
450
451//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
452
453void G4MicroElecElasticModel_new::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
454 const G4MaterialCutsCouple* /*couple*/,
455 const G4DynamicParticle* aDynamicElectron,
456 G4double,
457 G4double)
458{
459
460 if (verboseLevel > 3)
461 G4cout << "Calling SampleSecondaries() of G4MicroElecElasticModel" << G4endl;
462
463 G4double electronEnergy0 = aDynamicElectron->GetKineticEnergy();
464
465 if (electronEnergy0 < killBelowEnergy)
466 {
470 return;
471 }
472
473 if (electronEnergy0 < highEnergyLimit)
474 {
475 G4double cosTheta = 0;
477 {
478 cosTheta = 1 - 2 * G4UniformRand(); //Isotrope
479 }
480 else if (electronEnergy0 >= lowEnergyLimit)
481 {
482 cosTheta = RandomizeCosTheta(electronEnergy0);
483 }
484
485 G4double phi = 2. * pi * G4UniformRand();
486
487 G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection();
488 G4ThreeVector xVers = zVers.orthogonal();
489 G4ThreeVector yVers = zVers.cross(xVers);
490
491 G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
492 G4double yDir = xDir;
493 xDir *= std::cos(phi);
494 yDir *= std::sin(phi);
495
496 G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
497
500 }
501}
502
503//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
504
506{
507 //.................. T in eV!!!!!!!!!!!!!
508 G4double Z2= Z;
509 G4double M2= A;
510 G4double k_d;
511 G4double epsilon_d;
512 G4double g_epsilon_d;
513 G4double E_nu;
514
515 k_d=0.1334*std::pow(Z2,(2./3.))*std::pow(M2,(-1./2.));
516 epsilon_d=0.01014*std::pow(Z2,(-7./3.))*(T/eV);
517 g_epsilon_d= epsilon_d+0.40244*std::pow(epsilon_d,(3./4.))+3.4008*std::pow(epsilon_d,(1./6.));
518
519 E_nu=1./(1.+ k_d*g_epsilon_d);
520
521 return E_nu;
522}
523
524//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
525
527 (G4ParticleDefinition * particleDefinition, G4double k, G4double integrDiff)
528{
529
530 G4double theta = 0.;
531 G4double valueT1 = 0;
532 G4double valueT2 = 0;
533 G4double valueE21 = 0;
534 G4double valueE22 = 0;
535 G4double valueE12 = 0;
536 G4double valueE11 = 0;
537 G4double xs11 = 0;
538 G4double xs12 = 0;
539 G4double xs21 = 0;
540 G4double xs22 = 0;
541
542 if (particleDefinition == G4Electron::ElectronDefinition())
543 {
544 ThetaMap::iterator iterator_angle;
545 iterator_angle = thetaDataStorage.find(currentMaterialName);
546
547 energyMap::iterator iterator_energy;
548 iterator_energy = eIncidentEnergyStorage.find(currentMaterialName);
549
550 ProbaMap::iterator iterator_proba;
551 iterator_proba = eProbaStorage.find(currentMaterialName);
552
553 if (iterator_angle != thetaDataStorage.end() && iterator_energy != eIncidentEnergyStorage.end() && iterator_proba != eProbaStorage.end())
554 {
555 TriDimensionMap* eDiffCrossSectionData = iterator_angle->second; //Theta points
556 std::vector<G4double>* eTdummyVec = iterator_energy->second;
557 VecMap* eVecm = iterator_proba->second;
558
559 auto t2 = std::upper_bound(eTdummyVec->begin(), eTdummyVec->end(), k);
560 auto t1 = t2 - 1;
561 auto e12 = std::upper_bound((*eVecm)[(*t1)].begin(), (*eVecm)[(*t1)].end(), integrDiff);
562 auto e11 = e12 - 1;
563 auto e22 = std::upper_bound((*eVecm)[(*t2)].begin(), (*eVecm)[(*t2)].end(), integrDiff);
564 auto e21 = e22 - 1;
565
566 valueT1 = *t1;
567 valueT2 = *t2;
568 valueE21 = *e21;
569 valueE22 = *e22;
570 valueE12 = *e12;
571 valueE11 = *e11;
572
573 xs11 = (*eDiffCrossSectionData)[valueT1][valueE11];
574 xs12 = (*eDiffCrossSectionData)[valueT1][valueE12];
575 xs21 = (*eDiffCrossSectionData)[valueT2][valueE21];
576 xs22 = (*eDiffCrossSectionData)[valueT2][valueE22];
577 }
578 else
579 {
580 G4String str = "Material ";
581 str += currentMaterialName + " not found!";
582 G4Exception("G4MicroElecElasticModel_new::ComputeCrossSectionPerVolume", "em0002", FatalException, str);
583 }
584
585 }
586
587 if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0) return (0.);
588
589 theta = QuadInterpolator( valueE11, valueE12,
590 valueE21, valueE22,
591 xs11, xs12,
592 xs21, xs22,
593 valueT1, valueT2,
594 k, integrDiff );
595
596 return theta;
597}
598
599//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
600
602 G4double e2,
603 G4double e,
604 G4double xs1,
605 G4double xs2)
606{
607 G4double d1 = std::log(xs1);
608 G4double d2 = std::log(xs2);
609 G4double value = G4Exp(d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
610 return value;
611}
612
613//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
614
616 G4double e2,
617 G4double e,
618 G4double xs1,
619 G4double xs2)
620{
621 G4double d1 = xs1;
622 G4double d2 = xs2;
623 G4double value = (d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
624 return value;
625}
626
627//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
628
630 G4double e2,
631 G4double e,
632 G4double xs1,
633 G4double xs2)
634{
635 G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
636 G4double b = std::log10(xs2) - a*std::log10(e2);
637 G4double sigma = a*std::log10(e) + b;
638 G4double value = (std::pow(10.,sigma));
639 return value;
640}
641
642//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
643
645 G4double e21, G4double e22,
646 G4double xs11, G4double xs12,
647 G4double xs21, G4double xs22,
648 G4double t1, G4double t2,
649 G4double t, G4double e)
650{
651
652
653 // Lin-Lin
654 G4double interpolatedvalue1 = LinLinInterpolate(e11, e12, e, xs11, xs12);
655 G4double interpolatedvalue2 = LinLinInterpolate(e21, e22, e, xs21, xs22);
656 G4double value = LinLinInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
657
658 return value;
659}
660
661//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
662
664{
665 G4double integrdiff=0;
667 integrdiff = uniformRand;
668
669 G4double theta=0.;
670 G4double cosTheta=0.;
671 theta = Theta(G4Electron::ElectronDefinition(),k/eV,integrdiff);
672
673 cosTheta= std::cos(theta*pi/180.);
674
675 return cosTheta;
676}
677
678//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
679
680
682{
683 killBelowEnergy = threshold;
684
685 if (threshold < 5*CLHEP::eV)
686 {
687 G4Exception ("*** WARNING : the G4MicroElecElasticModel class is not validated below 5 eV !","",JustWarning,"") ;
688 threshold = 5*CLHEP::eV;
689 }
690}
691
692//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
static const G4double e1[44]
static const G4double e2[44]
G4double D(G4double temp)
static const G4double d1
static const G4double pos
static const G4double d2
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
static const G4double alpha
static constexpr double m
Definition: G4SIunits.hh:109
static constexpr double keV
Definition: G4SIunits.hh:202
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double MeV
Definition: G4SIunits.hh:200
static constexpr double pi
Definition: G4SIunits.hh:55
static constexpr double cm
Definition: G4SIunits.hh:99
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector orthogonal() const
Hep3Vector cross(const Hep3Vector &) const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:88
const G4Material * GetMaterial() const
G4bool LoadData(const G4String &argFileName) override
G4double FindValue(G4double e, G4int componentId=0) const override
std::map< G4double, std::map< G4double, G4double > > TriDimensionMap
G4double AcousticCrossSectionPerVolume(G4double ekin, G4double kbz, G4double rho, G4double cs, G4double Aac, G4double Eac, G4double prefactor)
void SetKillBelowThreshold(G4double threshold)
G4double LinLogInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
G4MicroElecElasticModel_new(const G4ParticleDefinition *p=0, const G4String &nam="MicroElecElasticModel")
std::map< G4double, std::vector< G4double > > VecMap
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double DamageEnergy(G4double T, G4double A, G4double Z)
std::map< G4String, G4MicroElecCrossSectionDataSet_new *, std::less< G4String > > MapData
G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax) override
G4double LinLinInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
G4double QuadInterpolator(G4double e11, G4double e12, G4double e21, G4double e22, G4double x11, G4double x12, G4double x21, G4double x22, G4double t1, G4double t2, G4double t, G4double e)
G4MicroElecMaterialStructure * currentMaterialStructure
G4double Theta(G4ParticleDefinition *aParticleDefinition, G4double k, G4double integrDiff)
G4ParticleChangeForGamma * fParticleChangeForGamma
G4double LogLogInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
const G4String & GetParticleName() const
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:767
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:123
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:662
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:655
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:774
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
static constexpr double eV
string material
Definition: eplot.py:19
#define DBL_MAX
Definition: templates.hh:62