Geant4-11
G4INCLSurfaceAvatar.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
38/*
39 * G4INCLReflectionAvatar.cc
40 *
41 * \date Jun 8, 2009
42 * \author Pekka Kaitaniemi
43 */
44
46#include "G4INCLRandom.hh"
49#include "G4INCLClustering.hh"
50#include <sstream>
51#include <string>
52
53namespace G4INCL {
54
56 :IAvatar(time), theParticle(aParticle), theNucleus(n),
57 particlePIn(0.),
58 particlePOut(0.),
59 particleTOut(0.),
60 TMinusV(0.),
61 TMinusV2(0.),
62 particleMass(0.),
63 sinIncidentAngle(0.),
64 cosIncidentAngle(0.),
65 sinRefractionAngle(0.),
66 cosRefractionAngle(0.),
67 refractionIndexRatio(0.),
68 internalReflection(false)
69 {
71 }
72
74 {
75 }
76
79 INCL_DEBUG("Particle " << theParticle->getID() << " is a spectator, reflection" << '\n');
81 }
82
83 // We forbid transmission of resonances below the Fermi energy. Emitting a
84 // delta particle below Tf can lead to negative excitation energies, since
85 // CDPP assumes that particles stay in the Fermi sea.
87 const G4double theFermiEnergy = theNucleus->getPotential()->getFermiEnergy(theParticle);
88 if(theParticle->getKineticEnergy()<theFermiEnergy) {
89 INCL_DEBUG("Particle " << theParticle->getID() << " is a resonance below Tf, reflection" << '\n'
90 << " Tf=" << theFermiEnergy << ", EKin=" << theParticle->getKineticEnergy() << '\n');
92 }
93 }
94
95 // Don't try to make a cluster if the leading particle is too slow
96 const G4double transmissionProbability = getTransmissionProbability(theParticle);
97 const G4double TOut = TMinusV;
98 const G4double kOut = particlePOut;
99 const G4double cosR = cosRefractionAngle;
100
101 INCL_DEBUG("Transmission probability for particle " << theParticle->getID() << " = " << transmissionProbability << '\n');
102 /* Don't attempt to construct clusters when a projectile spectator is
103 * trying to escape during a nucleus-nucleus collision. The idea behind
104 * this is that projectile spectators will later be collected in the
105 * projectile remnant, and trying to clusterise them somewhat feels like
106 * G4double counting. Moreover, applying the clustering algorithm on escaping
107 * projectile spectators makes the code *really* slow if the projectile is
108 * large.
109 */
112 && transmissionProbability>1.E-4) {
113 Cluster *candidateCluster = 0;
114
115 candidateCluster = Clustering::getCluster(theNucleus, theParticle);
116 if(candidateCluster != 0 &&
117 Clustering::clusterCanEscape(theNucleus, candidateCluster)) {
118
119 INCL_DEBUG("Cluster algorithm succeeded. Candidate cluster:" << '\n' << candidateCluster->print() << '\n');
120
121 // Check if the cluster can penetrate the Coulomb barrier
122 const G4double clusterTransmissionProbability = getTransmissionProbability(candidateCluster);
123 const G4double x = Random::shoot();
124
125 INCL_DEBUG("Transmission probability for cluster " << candidateCluster->getID() << " = " << clusterTransmissionProbability << '\n');
126
127 if (x <= clusterTransmissionProbability) {
129 INCL_DEBUG("Cluster " << candidateCluster->getID() << " passes the Coulomb barrier, transmitting." << '\n');
130 return new TransmissionChannel(theNucleus, candidateCluster);
131 } else {
132 INCL_DEBUG("Cluster " << candidateCluster->getID() << " does not pass the Coulomb barrier. Falling back to transmission of the leading particle." << '\n');
133 delete candidateCluster;
134 }
135 } else {
136 delete candidateCluster;
137 }
138 }
139
140 // If we haven't transmitted a cluster (maybe cluster feature was
141 // disabled or maybe we just can't produce an acceptable cluster):
142
143 // Always transmit projectile spectators if no cluster was formed and if
144 // transmission is energetically allowed
145 if(theParticle->isProjectileSpectator() && transmissionProbability>0.) {
146 INCL_DEBUG("Particle " << theParticle->getID() << " is a projectile spectator, transmission" << '\n');
147 return new TransmissionChannel(theNucleus, theParticle, TOut);
148 }
149
150 // Transmit or reflect depending on the transmission probability
151 const G4double x = Random::shoot();
152
153 if(x <= transmissionProbability) { // Transmission
154 INCL_DEBUG("Particle " << theParticle->getID() << " passes the Coulomb barrier, transmitting." << '\n');
157 return new TransmissionChannel(theNucleus, theParticle, kOut, cosR);
158 } else {
159 return new TransmissionChannel(theNucleus, theParticle, TOut);
160 }
161 } else { // Reflection
162 INCL_DEBUG("Particle " << theParticle->getID() << " does not pass the Coulomb barrier, reflection." << '\n');
164 }
165 }
166
169 }
170
172
174 ParticleList const &outgoing = fs->getOutgoingParticles();
175 if(!outgoing.empty()) { // Transmission
176// assert(outgoing.size()==1);
177 Particle *out = outgoing.front();
178 out->rpCorrelate();
179 if(out->isCluster()) {
180 Cluster *clusterOut = dynamic_cast<Cluster*>(out);
181 ParticleList const &components = clusterOut->getParticles();
182 for(ParticleIter i=components.begin(), e=components.end(); i!=e; ++i) {
183 if(!(*i)->isTargetSpectator())
185 }
187 } else if(!theParticle->isTargetSpectator()) {
188// assert(out==theParticle);
190 }
191 }
192 }
193
194 std::string SurfaceAvatar::dump() const {
195 std::stringstream ss;
196 ss << "(avatar " << theTime << " 'reflection" << '\n'
197 << "(list " << '\n'
198 << theParticle->dump()
199 << "))" << '\n';
200 return ss.str();
201 }
202
204
205 particleMass = particle->getMass();
206 const G4double V = particle->getPotentialEnergy();
207
208 // Correction to the particle kinetic energy if using real masses
209 const G4int theA = theNucleus->getA();
210 const G4int theZ = theNucleus->getZ();
211 const G4int theS = theNucleus->getS();
212 const G4double correction = particle->getEmissionQValueCorrection(theA, theZ, theS);
213 particleTOut = particle->getKineticEnergy() + correction;
214
215 if (particleTOut <= V) // No transmission if total energy < 0
216 return 0.0;
217
220
221 // Momenta in and out
222 const G4double particlePIn2 = particle->getMomentum().mag2();
223 const G4double particlePOut2 = 2.*particleMass*TMinusV+TMinusV2;
224 particlePIn = std::sqrt(particlePIn2);
225 particlePOut = std::sqrt(particlePOut2);
226
227 if (0. > V) // Automatic transmission for repulsive potential
228 return 1.0;
229
230 // Compute the transmission probability
231 G4double theTransmissionProbability;
233 // Use the formula with refraction
235
237 return 0.; // total internal reflection
238
239 // Intermediate variables for calculation
241 const G4double y = (x - cosRefractionAngle) / (x + cosRefractionAngle);
242
243 theTransmissionProbability = 1. - y*y;
244 } else {
245 // Use the formula without refraction
246 // Intermediate variable for calculation
248
249 // The transmission probability for a potential step
250 theTransmissionProbability = 4.*particlePIn*particlePOut/(y*y);
251 }
252
253 // For neutral and negative particles, no Coulomb transmission
254 // Also, no Coulomb if the particle takes away all of the nuclear charge
255 const G4int particleZ = particle->getZ();
256 if (particleZ <= 0 || particleZ >= theZ)
257 return theTransmissionProbability;
258
259 // Nominal Coulomb barrier
260 const G4double theTransmissionBarrier = theNucleus->getTransmissionBarrier(particle);
261 if (TMinusV >= theTransmissionBarrier) // Above the Coulomb barrier
262 return theTransmissionProbability;
263
264 // Coulomb-penetration factor
265 const G4double px = std::sqrt(TMinusV/theTransmissionBarrier);
266 const G4double logCoulombTransmission =
267 particleZ*(theZ-particleZ)/137.03*std::sqrt(2.*particleMass/TMinusV/(1.+TMinusV/2./particleMass))
268 *(Math::arcCos(px)-px*std::sqrt(1.-px*px));
269 INCL_DEBUG("Coulomb barrier, logCoulombTransmission=" << logCoulombTransmission << '\n');
270 if (logCoulombTransmission > 35.) // Transmission is forbidden by Coulomb
271 return 0.;
272 theTransmissionProbability *= std::exp(-2.*logCoulombTransmission);
273
274 return theTransmissionProbability;
275 }
276
278 cosIncidentAngle = particle->getCosRPAngle();
279 if(cosIncidentAngle>1.)
284 internalReflection = (std::fabs(sinCandidate)>1.);
288 } else {
289 sinRefractionAngle = sinCandidate;
291 }
292 INCL_DEBUG("Refraction parameters initialised as follows:\n"
293 << " cosIncidentAngle=" << cosIncidentAngle << '\n'
294 << " sinIncidentAngle=" << sinIncidentAngle << '\n'
295 << " cosRefractionAngle=" << cosRefractionAngle << '\n'
296 << " sinRefractionAngle=" << sinRefractionAngle << '\n'
297 << " refractionIndexRatio=" << refractionIndexRatio << '\n'
298 << " internalReflection=" << internalReflection << '\n');
299 }
300}
Static class for cluster formation.
#define INCL_DEBUG(x)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
void decrementCascading()
Definition: G4INCLBook.hh:78
void incrementEmittedClusters()
Definition: G4INCLBook.hh:79
ParticleList const & getParticles() const
std::string print() const
G4bool getRefraction() const
True if we should use refraction.
ParticleList const & getOutgoingParticles() const
void setType(AvatarType t)
virtual void fillFinalState(FinalState *fs)=0
G4double getFermiEnergy(const Particle *const p) const
Return the Fermi energy for a particle.
Store * getStore() const
G4bool isNucleusNucleusCollision() const
Is it a nucleus-nucleus collision?
G4double getTransmissionBarrier(Particle const *const p)
Get the transmission barrier.
NuclearPotential::INuclearPotential const * getPotential() const
Getter for thePotential.
std::vector< G4int > getParticleListBiasVector() const
G4bool isCluster() const
G4int getS() const
Returns the strangeness number.
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
void setBiasCollisionVector(std::vector< G4int > BiasCollisionVector)
Set the vector list of biased vertices on the particle path.
void setNumberOfKaon(const G4int NK)
G4double getPotentialEnergy() const
Get the particle potential energy.
void rpCorrelate()
Make the particle follow a strict r-p correlation.
G4bool isNucleonorLambda() const
Is this a Nucleon or a Lambda?
std::string dump() const
G4int getZ() const
Returns the charge number.
G4double getKineticEnergy() const
Get the particle kinetic energy.
G4bool isTargetSpectator() const
G4double getCosRPAngle() const
Get the cosine of the angle between position and momentum.
G4bool isProjectileSpectator() const
const G4INCL::ThreeVector & getMomentum() const
G4bool isKaon() const
Is this a Kaon?
G4int getNumberOfKaon() const
Number of Kaon inside de nucleus.
G4bool isResonance() const
Is it a resonance?
G4double getMass() const
Get the cached particle mass.
long getID() const
G4int getA() const
Returns the baryon number.
Book & getBook()
Definition: G4INCLStore.hh:259
Config const * getConfig()
Definition: G4INCLStore.hh:273
std::string dump() const
void initializeRefractionVariables(Particle const *const particle)
SurfaceAvatar(G4INCL::Particle *aParticle, G4double time, G4INCL::Nucleus *aNucleus)
virtual void postInteraction(FinalState *)
G4double getTransmissionProbability(Particle const *const particle)
Calculate the transmission probability for the particle.
G4INCL::Particle * theParticle
G4INCL::Nucleus * theNucleus
void fillFinalState(FinalState *fs)
G4double mag2() const
Cluster * getCluster(Nucleus *n, Particle *p)
Call the clustering algorithm.
G4bool clusterCanEscape(Nucleus const *const n, Cluster const *const c)
Determine whether the cluster can escape or not.
G4double arcCos(const G4double x)
Calculates arccos with some tolerance on illegal arguments.
G4double shoot()
Definition: G4INCLRandom.cc:93
ParticleList::const_iterator ParticleIter
@ SurfaceAvatarType