Geant4-11
G4EllipticalCone.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Implementation of G4EllipticalCone class
27//
28// This code implements an Elliptical Cone given explicitly by the
29// equation:
30// x^2/a^2 + y^2/b^2 = (z-h)^2
31// and specified by the parameters (a,b,h) and a cut parallel to the
32// xy plane above z = 0.
33//
34// Author: Dionysios Anninos
35// Revised: Evgueni Tcherniaev
36// --------------------------------------------------------------------
37
38#if !(defined(G4GEOM_USE_UELLIPTICALCONE) && defined(G4GEOM_USE_SYS_USOLIDS))
39
40#include "globals.hh"
41
42#include "G4EllipticalCone.hh"
43
44#include "G4RandomTools.hh"
45#include "G4GeomTools.hh"
46#include "G4ClippablePolygon.hh"
47#include "G4VoxelLimits.hh"
48#include "G4AffineTransform.hh"
49#include "G4BoundingEnvelope.hh"
51
52#include "meshdefs.hh"
53
54#include "Randomize.hh"
55
56#include "G4VGraphicsScene.hh"
57#include "G4VisExtent.hh"
58
59#include "G4AutoLock.hh"
60
61namespace
62{
64}
65
66using namespace CLHEP;
67
69//
70// Constructor - check parameters
71
73 G4double pxSemiAxis,
74 G4double pySemiAxis,
75 G4double pzMax,
76 G4double pzTopCut)
77 : G4VSolid(pName), zTopCut(0.)
78{
80
81 // Check Semi-Axis & Z-cut
82 //
83 if ( (pxSemiAxis <= 0.) || (pySemiAxis <= 0.) || (pzMax <= 0.) )
84 {
85 std::ostringstream message;
86 message << "Invalid semi-axis or height for solid: " << GetName()
87 << "\n X semi-axis, Y semi-axis, height = "
88 << pxSemiAxis << ", " << pySemiAxis << ", " << pzMax;
89 G4Exception("G4EllipticalCone::G4EllipticalCone()", "GeomSolids0002",
90 FatalErrorInArgument, message);
91 }
92
93 if ( pzTopCut <= 0 )
94 {
95 std::ostringstream message;
96 message << "Invalid z-coordinate for cutting plane for solid: " << GetName()
97 << "\n Z top cut = " << pzTopCut;
98 G4Exception("G4EllipticalCone::G4EllipticalCone()", "GeomSolids0002",
99 FatalErrorInArgument, message);
100 }
101
102 SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax );
103 SetZCut(pzTopCut);
104}
105
107//
108// Fake default constructor - sets only member data and allocates memory
109// for usage restricted to object persistency.
110
112 : G4VSolid(a), halfCarTol(0.),
113 xSemiAxis(0.), ySemiAxis(0.), zheight(0.), zTopCut(0.),
114 cosAxisMin(0.), invXX(0.), invYY(0.)
115{
116}
117
119//
120// Destructor
121
123{
124 delete fpPolyhedron; fpPolyhedron = nullptr;
125}
126
128//
129// Copy constructor
130
132 : G4VSolid(rhs), halfCarTol(rhs.halfCarTol),
133 fCubicVolume(rhs.fCubicVolume), fSurfaceArea(rhs.fSurfaceArea),
134 xSemiAxis(rhs.xSemiAxis), ySemiAxis(rhs.ySemiAxis),
135 zheight(rhs.zheight), zTopCut(rhs.zTopCut),
136 cosAxisMin(rhs.cosAxisMin), invXX(rhs.invXX), invYY(rhs.invYY)
137{
138}
139
141//
142// Assignment operator
143
145{
146 // Check assignment to self
147 //
148 if (this == &rhs) { return *this; }
149
150 // Copy base class data
151 //
153
154 // Copy data
155 //
159 zheight = rhs.zheight; zTopCut = rhs.zTopCut;
160 cosAxisMin = rhs.cosAxisMin; invXX = rhs.invXX; invYY = rhs.invYY;
161
162 fRebuildPolyhedron = false;
163 delete fpPolyhedron; fpPolyhedron = nullptr;
164
165 return *this;
166}
167
169//
170// Get bounding box
171
173 G4ThreeVector& pMax) const
174{
175 G4double zcut = GetZTopCut();
176 G4double height = GetZMax();
177 G4double xmax = GetSemiAxisX()*(height+zcut);
178 G4double ymax = GetSemiAxisY()*(height+zcut);
179 pMin.set(-xmax,-ymax,-zcut);
180 pMax.set( xmax, ymax, zcut);
181
182 // Check correctness of the bounding box
183 //
184 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
185 {
186 std::ostringstream message;
187 message << "Bad bounding box (min >= max) for solid: "
188 << GetName() << " !"
189 << "\npMin = " << pMin
190 << "\npMax = " << pMax;
191 G4Exception("G4EllipticalCone::BoundingLimits()", "GeomMgt0001",
192 JustWarning, message);
193 DumpInfo();
194 }
195}
196
198//
199// Calculate extent under transform and specified limit
200
201G4bool
203 const G4VoxelLimits& pVoxelLimit,
204 const G4AffineTransform& pTransform,
205 G4double& pMin, G4double& pMax) const
206{
207 G4ThreeVector bmin,bmax;
208 G4bool exist;
209
210 // Check bounding box (bbox)
211 //
212 BoundingLimits(bmin,bmax);
213 G4BoundingEnvelope bbox(bmin,bmax);
214#ifdef G4BBOX_EXTENT
215 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
216#endif
217 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
218 {
219 return exist = (pMin < pMax) ? true : false;
220 }
221
222 // Set bounding envelope (benv) and calculate extent
223 //
224 static const G4int NSTEPS = 48; // number of steps for whole circle
225 static const G4double ang = twopi/NSTEPS;
226 static const G4double sinHalf = std::sin(0.5*ang);
227 static const G4double cosHalf = std::cos(0.5*ang);
228 static const G4double sinStep = 2.*sinHalf*cosHalf;
229 static const G4double cosStep = 1. - 2.*sinHalf*sinHalf;
230 G4double zcut = bmax.z();
231 G4double height = GetZMax();
232 G4double sxmin = GetSemiAxisX()*(height-zcut)/cosHalf;
233 G4double symin = GetSemiAxisY()*(height-zcut)/cosHalf;
234 G4double sxmax = bmax.x()/cosHalf;
235 G4double symax = bmax.y()/cosHalf;
236
237 G4double sinCur = sinHalf;
238 G4double cosCur = cosHalf;
239 G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS);
240 for (G4int k=0; k<NSTEPS; ++k)
241 {
242 baseA[k].set(sxmax*cosCur,symax*sinCur,-zcut);
243 baseB[k].set(sxmin*cosCur,symin*sinCur, zcut);
244
245 G4double sinTmp = sinCur;
246 sinCur = sinCur*cosStep + cosCur*sinStep;
247 cosCur = cosCur*cosStep - sinTmp*sinStep;
248 }
249
250 std::vector<const G4ThreeVectorList *> polygons(2);
251 polygons[0] = &baseA;
252 polygons[1] = &baseB;
253 G4BoundingEnvelope benv(bmin,bmax,polygons);
254 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
255 return exist;
256}
257
259//
260// Determine where is point: inside, outside or on surface
261
263{
264 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z();
265 G4double ds = (hp - zheight)*cosAxisMin;
266 G4double dz = std::abs(p.z()) - zTopCut;
267 G4double dist = std::max(ds,dz);
268
269 if (dist > halfCarTol) return kOutside;
270 return (dist > -halfCarTol) ? kSurface : kInside;
271}
272
274//
275// Return unit normal at surface closest to p
276
278{
279 G4ThreeVector norm(0,0,0);
280 G4int nsurf = 0; // number of surfaces where p is placed
281
282 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z();
283 G4double ds = (hp - zheight)*cosAxisMin;
284 if (std::abs(ds) <= halfCarTol)
285 {
286 norm = G4ThreeVector(p.x()*invXX, p.y()*invYY, hp - p.z());
287 G4double mag = norm.mag();
288 if (mag == 0) return G4ThreeVector(0,0,1); // apex
289 norm *= (1/mag);
290 ++nsurf;
291 }
292 G4double dz = std::abs(p.z()) - zTopCut;
293 if (std::abs(dz) <= halfCarTol)
294 {
295 norm += G4ThreeVector(0., 0.,(p.z() < 0) ? -1. : 1.);
296 ++nsurf;
297 }
298
299 if (nsurf == 1) return norm;
300 else if (nsurf > 1) return norm.unit(); // elliptic edge
301 else
302 {
303 // Point is not on the surface
304 //
305#ifdef G4CSGDEBUG
306 std::ostringstream message;
307 G4int oldprc = message.precision(16);
308 message << "Point p is not on surface (!?) of solid: "
309 << GetName() << G4endl;
310 message << "Position:\n";
311 message << " p.x() = " << p.x()/mm << " mm\n";
312 message << " p.y() = " << p.y()/mm << " mm\n";
313 message << " p.z() = " << p.z()/mm << " mm";
314 G4cout.precision(oldprc);
315 G4Exception("G4EllipticalCone::SurfaceNormal(p)", "GeomSolids1002",
316 JustWarning, message );
317 DumpInfo();
318#endif
319 return ApproxSurfaceNormal(p);
320 }
321}
322
324//
325// Find surface nearest to point and return corresponding normal.
326// The algorithm is similar to the algorithm used in Inside().
327// This method normally should not be called.
328
331{
332 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z();
333 G4double ds = (hp - zheight)*cosAxisMin;
334 G4double dz = std::abs(p.z()) - zTopCut;
335 if (ds > dz && std::abs(hp - p.z()) > halfCarTol)
336 return G4ThreeVector(p.x()*invXX, p.y()*invYY, hp - p.z()).unit();
337 else
338 return G4ThreeVector(0., 0.,(p.z() < 0) ? -1. : 1.);
339}
340
342//
343// Calculate distance to shape from outside, along normalised vector
344// return kInfinity if no intersection, or intersection distance <= tolerance
345
347 const G4ThreeVector& v ) const
348{
349 G4double distMin = kInfinity;
350
351 // code from EllipticalTube
352
353 G4double sigz = p.z()+zTopCut;
354
355 //
356 // Check z = -dz planer surface
357 //
358
359 if (sigz < halfCarTol)
360 {
361 //
362 // We are "behind" the shape in z, and so can
363 // potentially hit the rear face. Correct direction?
364 //
365 if (v.z() <= 0)
366 {
367 //
368 // As long as we are far enough away, we know we
369 // can't intersect
370 //
371 if (sigz < 0) return kInfinity;
372
373 //
374 // Otherwise, we don't intersect unless we are
375 // on the surface of the ellipse
376 //
377
378 if ( sqr(p.x()/( xSemiAxis - halfCarTol ))
379 + sqr(p.y()/( ySemiAxis - halfCarTol )) <= sqr( zheight + zTopCut ) )
380 return kInfinity;
381
382 }
383 else
384 {
385 //
386 // How far?
387 //
388 G4double q = -sigz/v.z();
389
390 //
391 // Where does that place us?
392 //
393 G4double xi = p.x() + q*v.x(),
394 yi = p.y() + q*v.y();
395
396 //
397 // Is this on the surface (within ellipse)?
398 //
399 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight + zTopCut ) )
400 {
401 //
402 // Yup. Return q, unless we are on the surface
403 //
404 return (sigz < -halfCarTol) ? q : 0;
405 }
406 else if (xi/(xSemiAxis*xSemiAxis)*v.x()
407 + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0)
408 {
409 //
410 // Else, if we are traveling outwards, we know
411 // we must miss
412 //
413 // return kInfinity;
414 }
415 }
416 }
417
418 //
419 // Check z = +dz planer surface
420 //
421 sigz = p.z() - zTopCut;
422
423 if (sigz > -halfCarTol)
424 {
425 if (v.z() >= 0)
426 {
427
428 if (sigz > 0) return kInfinity;
429
430 if ( sqr(p.x()/( xSemiAxis - halfCarTol ))
431 + sqr(p.y()/( ySemiAxis - halfCarTol )) <= sqr( zheight-zTopCut ) )
432 return kInfinity;
433
434 }
435 else {
436 G4double q = -sigz/v.z();
437
438 G4double xi = p.x() + q*v.x(),
439 yi = p.y() + q*v.y();
440
441 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight - zTopCut ) )
442 {
443 return (sigz > -halfCarTol) ? q : 0;
444 }
445 else if (xi/(xSemiAxis*xSemiAxis)*v.x()
446 + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0)
447 {
448 // return kInfinity;
449 }
450 }
451 }
452
453
454#if 0
455
456 // check to see if Z plane is relevant
457 //
458 if (p.z() < -zTopCut - halfCarTol)
459 {
460 if (v.z() <= 0.0)
461 return distMin;
462
463 G4double lambda = (-zTopCut - p.z())/v.z();
464
465 if ( sqr((lambda*v.x()+p.x())/xSemiAxis) +
466 sqr((lambda*v.y()+p.y())/ySemiAxis) <=
468 {
469 return distMin = std::fabs(lambda);
470 }
471 }
472
473 if (p.z() > zTopCut + halfCarTol)
474 {
475 if (v.z() >= 0.0)
476 { return distMin; }
477
478 G4double lambda = (zTopCut - p.z()) / v.z();
479
480 if ( sqr((lambda*v.x() + p.x())/xSemiAxis) +
481 sqr((lambda*v.y() + p.y())/ySemiAxis) <=
483 {
484 return distMin = std::fabs(lambda);
485 }
486 }
487
488 if (p.z() > zTopCut - halfCarTol
489 && p.z() < zTopCut + halfCarTol )
490 {
491 if (v.z() > 0.)
492 { return kInfinity; }
493
494 return distMin = 0.;
495 }
496
497 if (p.z() < -zTopCut + halfCarTol
498 && p.z() > -zTopCut - halfCarTol)
499 {
500 if (v.z() < 0.)
501 { return distMin = kInfinity; }
502
503 return distMin = 0.;
504 }
505
506#endif
507
508 // if we are here then it either intersects or grazes the curved surface
509 // or it does not intersect at all
510 //
511 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z());
512 G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) +
513 v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z()));
514 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) -
515 sqr(zheight - p.z());
516
517 G4double discr = B*B - 4.*A*C;
518
519 // if the discriminant is negative it never hits the curved object
520 //
521 if ( discr < -halfCarTol )
522 { return distMin; }
523
524 // case below is when it hits or grazes the surface
525 //
526 if ( (discr >= -halfCarTol ) && (discr < halfCarTol ) )
527 {
528 return distMin = std::fabs(-B/(2.*A));
529 }
530
531 G4double plus = (-B+std::sqrt(discr))/(2.*A);
532 G4double minus = (-B-std::sqrt(discr))/(2.*A);
533
534 // Special case::Point on Surface, Check norm.dot(v)
535
536 if ( ( std::fabs(plus) < halfCarTol )||( std::fabs(minus) < halfCarTol ) )
537 {
538 G4ThreeVector truenorm(p.x()/(xSemiAxis*xSemiAxis),
539 p.y()/(ySemiAxis*ySemiAxis),
540 -( p.z() - zheight ));
541 if ( truenorm*v >= 0) // going outside the solid from surface
542 {
543 return kInfinity;
544 }
545 else
546 {
547 return 0;
548 }
549 }
550
551 // G4double lambda = std::fabs(plus) < std::fabs(minus) ? plus : minus;
552 G4double lambda = 0;
553
554 if ( minus > halfCarTol && minus < distMin )
555 {
556 lambda = minus ;
557 // check normal vector n * v < 0
558 G4ThreeVector pin = p + lambda*v;
559 if(std::fabs(pin.z())< zTopCut + halfCarTol)
560 {
561 G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis),
562 pin.y()/(ySemiAxis*ySemiAxis),
563 - ( pin.z() - zheight ));
564 if ( truenorm*v < 0)
565 { // yes, going inside the solid
566 distMin = lambda;
567 }
568 }
569 }
570 if ( plus > halfCarTol && plus < distMin )
571 {
572 lambda = plus ;
573 // check normal vector n * v < 0
574 G4ThreeVector pin = p + lambda*v;
575 if(std::fabs(pin.z()) < zTopCut + halfCarTol)
576 {
577 G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis),
578 pin.y()/(ySemiAxis*ySemiAxis),
579 - ( pin.z() - zheight ) );
580 if ( truenorm*v < 0)
581 { // yes, going inside the solid
582 distMin = lambda;
583 }
584 }
585 }
586 if (distMin < halfCarTol) distMin=0.;
587 return distMin ;
588}
589
591//
592// Calculate distance (<= actual) to closest surface of shape from outside
593// Return 0 if point inside
594
596{
597 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z();
598 G4double ds = (hp - zheight)*cosAxisMin;
599 G4double dz = std::abs(p.z()) - zTopCut;
600 G4double dist = std::max(ds,dz);
601 return (dist > 0) ? dist : 0.;
602}
603
605//
606// Calculate distance to surface of shape from `inside',
607// allowing for tolerance
608
610 const G4ThreeVector& v,
611 const G4bool calcNorm,
612 G4bool* validNorm,
613 G4ThreeVector* n ) const
614{
615 G4double distMin, lambda;
616 enum surface_e {kPlaneSurf, kCurvedSurf, kNoSurf} surface;
617
618 distMin = kInfinity;
619 surface = kNoSurf;
620
621 if (v.z() < 0.0)
622 {
623 lambda = (-p.z() - zTopCut)/v.z();
624
625 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis) +
626 sqr((p.y() + lambda*v.y())/ySemiAxis)) <
628 {
629 distMin = std::fabs(lambda);
630
631 if (!calcNorm) { return distMin; }
632 }
633 distMin = std::fabs(lambda);
634 surface = kPlaneSurf;
635 }
636
637 if (v.z() > 0.0)
638 {
639 lambda = (zTopCut - p.z()) / v.z();
640
641 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis)
642 + sqr((p.y() + lambda*v.y())/ySemiAxis) )
643 < (sqr(zheight - zTopCut + halfCarTol)) )
644 {
645 distMin = std::fabs(lambda);
646 if (!calcNorm) { return distMin; }
647 }
648 distMin = std::fabs(lambda);
649 surface = kPlaneSurf;
650 }
651
652 // if we are here then it either intersects or grazes the
653 // curved surface...
654 //
655 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z());
656 G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis) +
657 v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z()));
658 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis)
659 - sqr(zheight - p.z());
660
661 G4double discr = B*B - 4.*A*C;
662
663 if ( discr >= - halfCarTol && discr < halfCarTol )
664 {
665 if(!calcNorm) { return distMin = std::fabs(-B/(2.*A)); }
666 }
667
668 else if ( discr > halfCarTol )
669 {
670 G4double plus = (-B+std::sqrt(discr))/(2.*A);
671 G4double minus = (-B-std::sqrt(discr))/(2.*A);
672
673 if ( plus > halfCarTol && minus > halfCarTol )
674 {
675 // take the shorter distance
676 //
677 lambda = std::fabs(plus) < std::fabs(minus) ? plus : minus;
678 }
679 else
680 {
681 // at least one solution is close to zero or negative
682 // so, take small positive solution or zero
683 //
684 lambda = plus > -halfCarTol ? plus : 0;
685 }
686
687 if ( std::fabs(lambda) < distMin )
688 {
689 if( std::fabs(lambda) > halfCarTol)
690 {
691 distMin = std::fabs(lambda);
692 surface = kCurvedSurf;
693 }
694 else // Point is On the Surface, Check Normal
695 {
696 G4ThreeVector truenorm(p.x()/(xSemiAxis*xSemiAxis),
697 p.y()/(ySemiAxis*ySemiAxis),
698 -( p.z() - zheight ));
699 if( truenorm.dot(v) > 0 )
700 {
701 distMin = 0.0;
702 surface = kCurvedSurf;
703 }
704 }
705 }
706 }
707
708 // set normal if requested
709 //
710 if (calcNorm)
711 {
712 if (surface == kNoSurf)
713 {
714 *validNorm = false;
715 }
716 else
717 {
718 *validNorm = true;
719 switch (surface)
720 {
721 case kPlaneSurf:
722 {
723 *n = G4ThreeVector(0.,0.,(v.z() > 0.0 ? 1. : -1.));
724 }
725 break;
726
727 case kCurvedSurf:
728 {
729 G4ThreeVector pexit = p + distMin*v;
730 G4ThreeVector truenorm( pexit.x()/(xSemiAxis*xSemiAxis),
731 pexit.y()/(ySemiAxis*ySemiAxis),
732 -( pexit.z() - zheight ) );
733 truenorm /= truenorm.mag();
734 *n= truenorm;
735 }
736 break;
737
738 default: // Should never reach this case ...
739 DumpInfo();
740 std::ostringstream message;
741 G4int oldprc = message.precision(16);
742 message << "Undefined side for valid surface normal to solid."
743 << G4endl
744 << "Position:" << G4endl
745 << " p.x() = " << p.x()/mm << " mm" << G4endl
746 << " p.y() = " << p.y()/mm << " mm" << G4endl
747 << " p.z() = " << p.z()/mm << " mm" << G4endl
748 << "Direction:" << G4endl
749 << " v.x() = " << v.x() << G4endl
750 << " v.y() = " << v.y() << G4endl
751 << " v.z() = " << v.z() << G4endl
752 << "Proposed distance :" << G4endl
753 << " distMin = " << distMin/mm << " mm";
754 message.precision(oldprc);
755 G4Exception("G4EllipticalCone::DistanceToOut(p,v,..)",
756 "GeomSolids1002", JustWarning, message);
757 break;
758 }
759 }
760 }
761
762 if (distMin < halfCarTol) { distMin=0; }
763
764 return distMin;
765}
766
768//
769// Calculate distance (<=actual) to closest surface of shape from inside
770
772{
773#ifdef G4SPECSDEBUG
774 if( Inside(p) == kOutside )
775 {
776 std::ostringstream message;
777 G4int oldprc = message.precision(16);
778 message << "Point p is outside (!?) of solid: " << GetName() << "\n"
779 << "Position:\n"
780 << " p.x() = " << p.x()/mm << " mm\n"
781 << " p.y() = " << p.y()/mm << " mm\n"
782 << " p.z() = " << p.z()/mm << " mm";
783 message.precision(oldprc) ;
784 G4Exception("G4Ellipsoid::DistanceToOut(p)", "GeomSolids1002",
785 JustWarning, message);
786 DumpInfo();
787 }
788#endif
789 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z();
790 G4double ds = (zheight - hp)*cosAxisMin;
791 G4double dz = zTopCut - std::abs(p.z());
792 G4double dist = std::min(ds,dz);
793 return (dist > 0) ? dist : 0.;
794}
795
797//
798// GetEntityType
799
801{
802 return G4String("G4EllipticalCone");
803}
804
806//
807// Make a clone of the object
808
810{
811 return new G4EllipticalCone(*this);
812}
813
815//
816// Stream object contents to an output stream
817
818std::ostream& G4EllipticalCone::StreamInfo( std::ostream& os ) const
819{
820 G4int oldprc = os.precision(16);
821 os << "-----------------------------------------------------------\n"
822 << " *** Dump for solid - " << GetName() << " ***\n"
823 << " ===================================================\n"
824 << " Solid type: G4EllipticalCone\n"
825 << " Parameters: \n"
826
827 << " semi-axis x: " << xSemiAxis/mm << " mm \n"
828 << " semi-axis y: " << ySemiAxis/mm << " mm \n"
829 << " height z: " << zheight/mm << " mm \n"
830 << " half length in z: " << zTopCut/mm << " mm \n"
831 << "-----------------------------------------------------------\n";
832 os.precision(oldprc);
833
834 return os;
835}
836
838//
839// Return random point on the surface of the solid
840
842{
843 G4double x0 = xSemiAxis*zheight; // x semi axis at z=0
844 G4double y0 = ySemiAxis*zheight; // y semi axis at z=0
846 G4double kmin = (zTopCut >= zheight ) ? 0. : (zheight - zTopCut)/zheight;
847 G4double kmax = (zTopCut >= zheight ) ? 2. : (zheight + zTopCut)/zheight;
848
849 // Set areas (base at -Z, side surface, base at +Z)
850 //
851 G4double szmin = pi*x0*y0*kmax*kmax;
852 G4double szmax = pi*x0*y0*kmin*kmin;
853 G4double sside = s0*(kmax*kmax - kmin*kmin);
854 G4double ssurf[3] = { szmin, sside, szmax };
855 for (auto i=1; i<3; ++i) { ssurf[i] += ssurf[i-1]; }
856
857 // Select surface
858 //
859 G4double select = ssurf[2]*G4UniformRand();
860 G4int k = 2;
861 if (select <= ssurf[1]) k = 1;
862 if (select <= ssurf[0]) k = 0;
863
864 // Pick random point on selected surface
865 //
867 switch(k)
868 {
869 case 0: // base at -Z, uniform distribution, rejection sampling
870 {
871 G4double zh = zheight + zTopCut;
873 p.set(rho.x(),rho.y(),-zTopCut);
874 break;
875 }
876 case 1: // side surface, uniform distribution, rejection sampling
877 {
879 G4double a = x0;
880 G4double b = y0;
881
883 G4double aa = a*a;
884 G4double bb = b*b;
885 G4double R = std::max(a,b);
886 G4double mu_max = R*std::sqrt(hh + R*R);
887
888 G4double x,y;
889 for (auto i=0; i<1000; ++i)
890 {
892 x = std::cos(phi);
893 y = std::sin(phi);
894 G4double xx = x*x;
895 G4double yy = y*y;
896 G4double E = hh + aa*xx + bb*yy;
897 G4double F = (aa-bb)*x*y;
898 G4double G = aa*yy + bb*xx;
899 G4double mu = std::sqrt(E*G - F*F);
900 if (mu_max*G4UniformRand() <= mu) break;
901 }
902 p.set(zh*xSemiAxis*x,zh*ySemiAxis*y,zheight-zh);
903 break;
904 }
905 case 2: // base at +Z, uniform distribution, rejection sampling
906 {
907 G4double zh = zheight - zTopCut;
909 p.set(rho.x(),rho.y(),zTopCut);
910 break;
911 }
912 }
913 return p;
914}
915
917//
918// Get cubic volume
919
921{
922 if (fCubicVolume == 0.0)
923 {
924 G4double x0 = xSemiAxis*zheight; // x semi axis at z=0
925 G4double y0 = ySemiAxis*zheight; // y semi axis at z=0
926 G4double v0 = CLHEP::pi*x0*y0*zheight/3.;
927 G4double kmin = (zTopCut >= zheight ) ? 0. : (zheight - zTopCut)/zheight;
928 G4double kmax = (zTopCut >= zheight ) ? 2. : (zheight + zTopCut)/zheight;
929 fCubicVolume = (kmax - kmin)*(kmax*kmax + kmax*kmin + kmin*kmin)*v0;
930 }
931 return fCubicVolume;
932}
933
935//
936// Get surface area
937
939{
940 if (fSurfaceArea == 0.0)
941 {
942 G4double x0 = xSemiAxis*zheight; // x semi axis at z=0
943 G4double y0 = ySemiAxis*zheight; // y semi axis at z=0
945 G4double kmin = (zTopCut >= zheight ) ? 0. : (zheight - zTopCut)/zheight;
946 G4double kmax = (zTopCut >= zheight ) ? 2. : (zheight + zTopCut)/zheight;
947 fSurfaceArea = (kmax - kmin)*(kmax + kmin)*s0
948 + CLHEP::pi*x0*y0*(kmin*kmin + kmax*kmax);
949 }
950 return fSurfaceArea;
951}
952
954//
955// Methods for visualisation
956
958{
959 scene.AddSolid(*this);
960}
961
963{
964 // Define the sides of the box into which the solid instance would fit.
965 //
966 G4ThreeVector pmin,pmax;
967 BoundingLimits(pmin,pmax);
968 return G4VisExtent(pmin.x(),pmax.x(),
969 pmin.y(),pmax.y(),
970 pmin.z(),pmax.z());
971}
972
974{
976}
977
979{
980 if ( (fpPolyhedron == nullptr)
984 {
986 delete fpPolyhedron;
988 fRebuildPolyhedron = false;
989 l.unlock();
990 }
991 return fpPolyhedron;
992}
993
994#endif // !defined(G4GEOM_USE_UELLIPTICALCONE) || !defined(G4GEOM_USE_SYS_USOLIDS)
std::vector< G4ThreeVector > G4ThreeVectorList
G4double C(G4double temp)
G4double B(G4double temperature)
@ JustWarning
@ FatalErrorInArgument
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
static const G4double pMax
static const G4double pMin
G4double G4RandomRadiusInRing(G4double rmin, G4double rmax)
G4TwoVector G4RandomPointInEllipse(G4double a, G4double b)
static constexpr double twopi
Definition: G4SIunits.hh:56
static constexpr double mm
Definition: G4SIunits.hh:95
static constexpr double pi
Definition: G4SIunits.hh:55
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double x() const
double y() const
double z() const
Hep3Vector unit() const
double x() const
double y() const
double dot(const Hep3Vector &) const
double mag() const
void set(double x, double y, double z)
G4bool BoundingBoxVsVoxelLimits(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
G4VisExtent GetExtent() const
void SetSemiAxis(G4double x, G4double y, G4double z)
G4Polyhedron * GetPolyhedron() const
void BoundingLimits(G4ThreeVector &pMin, G4ThreeVector &pMax) const
G4GeometryType GetEntityType() const
G4VSolid * Clone() const
G4double GetSurfaceArea()
G4EllipticalCone(const G4String &pName, G4double pxSemiAxis, G4double pySemiAxis, G4double zMax, G4double pzTopCut)
G4ThreeVector ApproxSurfaceNormal(const G4ThreeVector &p) const
void SetZCut(G4double newzTopCut)
G4double GetSemiAxisX() const
virtual ~G4EllipticalCone()
G4ThreeVector GetPointOnSurface() const
G4Polyhedron * CreatePolyhedron() const
G4Polyhedron * fpPolyhedron
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const
G4double GetSemiAxisY() const
G4double GetCubicVolume()
std::ostream & StreamInfo(std::ostream &os) const
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pMin, G4double &pMax) const
G4double GetZMax() const
G4ThreeVector SurfaceNormal(const G4ThreeVector &p) const
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=nullptr, G4ThreeVector *n=nullptr) const
EInside Inside(const G4ThreeVector &p) const
G4double GetZTopCut() const
G4EllipticalCone & operator=(const G4EllipticalCone &rhs)
void DescribeYourselfTo(G4VGraphicsScene &scene) const
static G4double EllipticConeLateralArea(G4double a, G4double b, G4double h)
Definition: G4GeomTools.cc:546
G4int GetNumberOfRotationStepsAtTimeOfCreation() const
virtual void AddSolid(const G4Box &)=0
G4String GetName() const
void DumpInfo() const
G4double kCarTolerance
Definition: G4VSolid.hh:299
G4VSolid & operator=(const G4VSolid &rhs)
Definition: G4VSolid.cc:107
static G4int GetNumberOfRotationSteps()
EAxis
Definition: geomdefs.hh:54
EInside
Definition: geomdefs.hh:67
@ kInside
Definition: geomdefs.hh:70
@ kOutside
Definition: geomdefs.hh:68
@ kSurface
Definition: geomdefs.hh:69
static const G4double kInfinity
Definition: geomdefs.hh:41
Definition: DoubConv.h:17
static constexpr double twopi
Definition: SystemOfUnits.h:56
static constexpr double pi
Definition: SystemOfUnits.h:55
T max(const T t1, const T t2)
brief Return the largest of the two arguments
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
T sqr(const T &x)
Definition: templates.hh:128