Cosmologie

Détecteurs multi-fréquences pour l’observation de la polarisation du rayonnement fossile

L’étude des fluctuations polarisées du rayonnement fossile à 3K (Cosmic Microwave Background, CMB) apparaît aujourd’hui comme une voie incontournable pour progresser dans notre compréhension de l’Univers. Après Planck, la communauté européenne étudie actuellement deux options dans le cadre d’une mission spatiale dédiée à la caractérisation de la polarisation du ciel sub-millimétrique et millimétrique: une participation à la mission spatial japonaise LiteBird d’une part et l’optimisation du concept d’instrument spatial COrE+ en vue de l’appel d’offre ESA M5 d’autre part. 

Exploring the primordial Universe, inflation and primordial Gravitational Waves with QUBIC, the QU Bolometric Interferometer for Cosmology

The quest for B-mode polarization of the Cosmic Microwave Background is among the most promising topics in Observational Cosmology as it would sign the presence of primordial gravitational waves hence opening a window on the inflation era. It also one the most challenging as the expected is very small and require high sensitivity and low systematic instruments with wide frequency coverage in order to separate the primordial signal from foreground emissions.

Analyse multicomposante de l’émission polarisée du ciel pour l’observation de la polarisation du fond cosmologique

Le sujet proposé consiste à analyser et modéliser l’émission polarisée du ciel en utilisant les observations disponibles (notamment Planck et WMAP) afin d’affiner notre compréhension de ces émissions polarisées en fonction de la fréquence et de la direction d’observation, d’évaluer les incertitudes de cette modélisation, et de développer les méthodes d’analyse permettant de séparer les composantes d’émission polarisée du ciel avec une future mission spatiale dédiée à ces mesures.

Characterization of the QUBIC instrument to measure the polarisation of the Cosmic Microwave Background

The characterization of the polarized fluctuations of the Cosmic Microwave Background (CMB) is a major scientific way to further understand the primordial Universe. QUBIC (Q & U Bolometric Interferometer for Cosmology) is an international experiment dedicated in the measurement of this signal. It is based on bolometric interferometry in order to combine the high immunity to systematic effects of an interferometer with the high sensitivity of low temperature incoherent detectors. The detection chain consists in 2048 Transition Edge Sensors cooled to 300mK.

Architecture instrumentale optimisée pour la mesure de la polarisation du rayonnement fossile

L’étude des fluctuations polarisées du rayonnement fossile à 3K (Cosmic Microwave Background, CMB) apparaît aujourd’hui comme une voie incontournable pour progresser dans notre compréhension de l’Univers. Le niveau de signal attendu, quelques nK pour le mode B le plus faible, requiert une chaîne de détection à la fois ultra sensible et extrêmement immune aux effets parasites instrumentaux. 

Matrices de bolomètres supraconducteurs pour la mesure de la polarisation du fond diffus cosmologique avec l’instrument QUBIC

L’étude des fluctuations polarisées du rayonnement fossile à 3K (Cosmic Microwave Background, CMB) apparaît aujourd’hui comme une voie incontournable pour progresser dans notre compréhension de l’Univers. Le niveau de signal attendu, quelques nK pour le mode B le plus faible, requiert une chaîne de détection à la fois ultra sensible et extrêmement immune aux effets parasites instrumentaux.

Exploring the primordial Universe with QUBIC, the QU Bolometric Interferometer for Cosmology

The quest for B-mode polarization of the Cosmic Microwave Background is among the most promising topics in Observational Cosmology as it would open a window on the inflation era. It also one the most challenging as the expected is very small and require high sensitivity and low systematic instruments with wide frequency coverage in order to separate the primordial signal from foreground emissions.

Preparing The Euclid Dark Energy Survey with Clusters

The primary objective of cosmological research in the coming decade is to understand the accelerated expansion of the Universe, attributed to either a dark energy component or a modification to gravity on cosmic scales.  ESA’s Euclid mission is dedicated to probing the physical origin of the acceleration through measures of large-scale structure.  Galaxy clustering, gravitational lensing and galaxy cluster abundance are the three central observational probes. 

Pages

Subscribe to RSS - Cosmologie