Stochastic inflation, primordial black holes, and beyond the slow-roll approximation

I will explain how primordial black holes can form from
perturbations seeded during inflation and how their abundance can be
calculated in the framework of stochastic inflation. This formalism
incorporates quantum backreaction of the small-wavelength fluctuations
on the large distances dynamics of the Universe. If quantum
corrections are small, the probability distribution of density
fluctuations is well approximated by a Gaussian. If they are large,
the PDF has a different profile with a longer tail and leads to

Holographic collisions across a phase transition

We use holography to mimic heavy ion collisions and obtain new qualitative insights possibly relevant for QCD. Our studies are motivated by the extensive experimental efforts devoted to the search of the conjectured critical point in the QCD phase diagram. Holographically, we perform collisions in strongly-coupled gauge theories with thermal phase transitions. We find that near a second order phase transition almost all the energy of the projectiles is deposited into a long-lived, quasi-static blob of energy.

Two modified gravity theories with few degrees of freedom

In this talk, I will present two specific modifications of gravity in 
which the number of degrees of freedom is minimized. I will focus on 
their construction, showing how different methods can be used to 
accomplish the same goal: keeping a low number of degrees of freedom. 
The first theory that I will describe is the minimal theory of 
quasidilaton massive gravity, a Lorentz-breaking theory of massive 
gravity + scalar field. As a second example, I will describe a class of 
modified gravity theories that propagate only the usual two 

Perturbative study of infrared QCD

Quantum Chromodynamics, the microscopic theory of strong interaction, is asymptotically free. As a consequence, perturbation theory is a useful tool to study high energy phenomena. In the opposite regime, the infrared, QCD is believed to be non-perturbative. However, last decade lattice simulations have showed that the coupling constant is finite in the infrared and not so big. That makes us think that some features of infrared QCD could be understood using perturbation theory. Moreover, the completely gauge-fixed Lagrangian is not known in the infrared.

Testing relativistic vacuum decay with cold atoms

Vacuum decay is a prominent example of strongly nonlinear effects in quantum field theory with potentially important implications for cosmology, relating to phase transitions in the early universe or the supposed metastability of the current Higgs vacuum. Although a general theoretical description was laid out in the 80s by Sidney Coleman and his collaborators, fundamental questions pertaining to the back-reaction of true vacuum bubbles on space-time curvature and their correlations remain so far unanswered, calling for different approaches to the problem.

Gravitational Generation of Dark Matter

In this talk I will discuss several working models for producing dark matter (DM), which require no couplings between the visible sector and DM besides (classical) gravity. In particular, I will show that contrary to common wisdom the current observational bounds do not substantially limit the parameter space nor cosmological history, but rather that gravitational particle production can quite naturally lead to a DM abundance in agreement with observations. Based on arXiv:1808.08236 and arXiv:(to be uploaded…).

AdS_2 holography - Mind the Gap!

Black holes appear to lead to information loss, thus violating one of the fundamental tenets of Quantum Mechanics. Recent Information-Theory-based arguments imply that information loss can only be avoided if at the scale of the black hole horizon there exists a structure (commonly called fuzzball or firewall) that allows information to escape. I will discuss the highly-unusual properties that this structure must have and how these properties emerge in the realization of this structure in String Theory via branes, fluxes and topology.

Bayesian measurements of inflation with additional fields

In this talk I will demonstrate how, by introducing additional scalar degrees of freedom, one can measure properties of the inflationary era which may be otherwise inaccessible. Using two explicit examples (the curvaton and a feebly interacting model of dark matter), which introduce new informative priors into the post-inflationary phenomenology, we are able to constrain either the total duration that inflation takes place or its energy scale independently of the tensor-to-scalar ratio.

Inflation beyond GR

Scalar-tensor theories of gravity have become a very rich framework from which one can construct viable phenomenological models of early- and late-time cosmology. In particular for inflation, previous models constructed using the Horndeski Lagrangian give predictions which are now in tension with CMB data. On the other hand, by trying to fit the observations, one would find instabilities at the level of the quantum perturbations. Furthermore, computing the standard inflationary observables in a semi-analytical way is a nontrivial task.


S'abonner à RSS - Théorie