Théorie

Effective field theory reproducing the MOND phenomenology based on a non-Abelian Yang-Mills graviphoton

Motivated by the phenomenology of MOND, we propose a theory based on a fundamental non Abelian Yang-Mills gauge field with gravitational coupling constant (a "graviphoton") emerging in a regime of weak acceleration, i.e. below the MOND acceleration scale. Using the formalism of the effective field theory and invoking a mechanism of gravitational polarization of the dark matter medium, we show that generic solutions of this theory reproduce the deep MOND limit without having to introduce in an ad hoc way an arbitrary function in the action.

Identifying supermassive binary black holes in blazar centers with a jet precession model

Abstract: Blazars are among the most powerful objects in the Universe. These active galactic nuclei launch a relativistic jet that is viewed under a small inclination angle from Earth. They are characterized by a high time variability along the whole electromagnetic spectrum, reaching from scales of minutes to years. Is the time period between such blazar flares declining, then they can be caused by jet precession in an inspiraling supermassive binary black hole at the blazar center.
 

Weyl-invariant Einstein-Cartan gravity: unifying the strong CP and hierarchy puzzles

 We show that the minimal Weyl-invariant Einstein-Cartan gravity in combination with the Standard Model of particle physics contains just one extra scalar degree of freedom (in addition to the graviton and the Standard Model fields) with the properties of an axion-like particle which can solve the strong CP-problem. The smallness of this particle's mass as well as of the cosmological constant is ensured by tiny values of the gauge coupling constants of the local Lorentz group.

Solar Neutrinos: Is There a Future?

Studies of solar neutrinos have been tremendously important, revealing the nature of the Sun’s power source and that its neutrino flux is strongly affected by flavor mixing.  Nowadays, one gets the impression that this field is over.  However, this is not due to a lack of interesting questions; it is due to a lack of experimental progress.  I show how this can be solved, opening opportunities for discoveries in particle physics and astrophysics, simultaneously.

Pages

Subscribe to RSS - Théorie