SMICA  1.0
Public Member Functions | Public Attributes | List of all members
smica.component.SourceAmpl Class Reference
Inheritance diagram for smica.component.SourceAmpl:
smica.component.Source smica.component.Component

Public Member Functions

def __init__
 
def is_astro
 
def set_ampl
 
def set_powspec
 
def powspec
 
def ampl
 
def get_dim
 
def set_theta
 
def get_theta
 
def score_powspec
 
def get_thetascore
 
def get_thetaroot
 
def get_thetafim
 
def close_form
 
- Public Member Functions inherited from smica.component.Source
def is_astro
 
def set_dim
 
def __init__
 
def set_mixmat
 
def fix_mixmat
 
def set_powspec
 
def fix_powspec
 
def mixmat
 
def powspec
 
def autopowspec
 
def covariance
 
def score_mixmat
 
def score_powspec
 
def plot_mixmat
 
def plot_powspec
 
- Public Member Functions inherited from smica.component.Component
def plot_power
 
def plot_em
 
def set_gaussian_prior
 
def get_penalty
 
def get_score_penalty
 
def get_fim_penalty
 

Public Attributes

 ndet
 
 nbin
 
 name
 
 offset
 
- Public Attributes inherited from smica.component.Source
 dim
 
 ndet
 
 nbin
 
 name
 
- Public Attributes inherited from smica.component.Component
 mu
 
 sigma_inv
 

Detailed Description

A one dimensional source component of fixed shape.

The mixing matrix is a column vector (ndet, 1) and power spectrum
is described by a vector (1, nbin) multiply by a constant factor.
This factor is considered as the only free parameter for power
spectrum.

Constructor & Destructor Documentation

def smica.component.SourceAmpl.__init__ (   self,
  ndet,
  nbin,
  name = None,
  offset = None 
)
Initialize component parameters arrays.

Parameters
----------
ndet : number of detectors
nbin : number of bins
name : name of the component

Member Function Documentation

def smica.component.SourceAmpl.ampl (   self)
Return scalar factor ampl.

Returns
-------
ampl : scalar.
def smica.component.SourceAmpl.close_form (   self,
  stats,
  N 
)
Update local parameters (ie power spectra array) using a close form algorithm.

Parameters
----------
stats : array-like, shape (ndet, ndet, nbin).
Second order statistics ie empirical covariance matrices of
the observations.
N : array-like, shape (ndet, ndet, nbin).
Covariance matrices of the model deprived from the
contribution of the component.
def smica.component.SourceAmpl.get_dim (   self)
Return the number of free parameters of the component.
def smica.component.SourceAmpl.get_theta (   self,
  mixmat = None,
  ampl = None 
)
Return component parameters as a vector.

Parameters
----------
mixmat : array-like, shape (ndet, 1).
If None, values are read from inner mixing matrix.
ampl : array-like, shape (1,1).
If None, values are read from inner amplitude scalar value.

Returns
----------
array-like, shape (N, 1), where N is the number of free parameters.
def smica.component.SourceAmpl.get_thetafim (   self,
  iRr,
  w 
)
Return Fisher Information Matrix.

Parameters
----------
iRr : array-like, shape (ndet, ndet, nbin).
iRr is the square root of the inverse of the covariance of the
model, which is constant for all components.
w : array-like, shape (1, nbin). w is the number of modes for each bin.

Returns
----------
array-like, shape (N, N), where N is the number of free parameters.
def smica.component.SourceAmpl.get_thetaroot (   self,
  iRr,
  bin = 0 
)
Return root contribution to the Fisher Information Matrix for a given bin.

Parameters
----------
iRr : array-like, shape (ndet, ndet).
iRr is the square root of the inverse of the covariance of the
model, which is constant for all components.
bin : int, bin number

Returns
----------
array-like, shape (mxm, N), where N is the number of free parameters.
def smica.component.SourceAmpl.get_thetascore (   self,
  D 
)
Return likelihood first derivative values wrt component
parameters as a vector.

Parameters
----------
D : array-like, shape (ndet, ndet, nbin).
D is the first derivative of the likelihood wrt the covariance
of the model, which is constant for all components.

Returns
----------
array-like, shape (N, 1), where N is the number of free parameters.
def smica.component.SourceAmpl.powspec (   self,
  bin = None 
)
Return power spectra array (multiply by factor ampl).

Parameters
----------
bin : bin number. If None, complete array is returned.

Returns
-------
array, shape (dim, dim, nbin).
def smica.component.SourceAmpl.score_powspec (   self,
  D 
)
Return first derivative of the likelihood wrt power
spectra parameters (ie scalar factor ampl).

Parameters
----------
D : array-like, shape (ndet, ndet, nbin).
D is the first derivative of the likelihood wrt the covariance
of the model, which is constant for all components.

Returns
-------
array, shape (1,1).
The score of fixed parameters is set to zero.
def smica.component.SourceAmpl.set_ampl (   self,
  ampl,
  fixed = None 
)
Set amplitude value.

Parameters
----------
ampl : scalar.
fixed : scalar.
If not equal to zero, fixes the parameters ampl.
It is also possible to use keywords 'all' and
'null' to fix (respectively) all parameters or none.
def smica.component.SourceAmpl.set_powspec (   self,
  powspec,
  bin = None,
  fixed = None 
)
Set power spectra array.

Parameters
----------
powspec : array-like, shape (dim, dim, nbin).
bin : bin number. If None, all bins are set.
fixed : array-like, shape (dim, dim, nbin)
Entries which are not equal to zero point to
fixed indices.  It is also possible to use keywords 'all' and
'null' to fix (respectively) all parameters or none.
def smica.component.SourceAmpl.set_theta (   self,
  theta 
)
Set new values for component parameters.

Parameters
----------
theta : array-like, shape (N, 1), where N is the number of free parameters.

The documentation for this class was generated from the following file: