SMICA  1.0
Public Member Functions | Public Attributes | List of all members
smica.component.Source Class Reference

Source. More...

Inheritance diagram for smica.component.Source:
smica.component.Component smica.component.Source1D smica.component.SourceAmpl smica.component.SourceND smica.component.Source1Dexp

Public Member Functions

def is_astro
 
def set_dim
 
def __init__
 
def set_mixmat
 
def fix_mixmat
 
def set_powspec
 
def fix_powspec
 
def mixmat
 
def powspec
 
def autopowspec
 
def covariance
 
def score_mixmat
 
def score_powspec
 
def plot_mixmat
 
def plot_powspec
 
- Public Member Functions inherited from smica.component.Component
def plot_power
 
def plot_em
 
def set_gaussian_prior
 
def get_penalty
 
def get_score_penalty
 
def get_fim_penalty
 

Public Attributes

 dim
 
 ndet
 
 nbin
 
 name
 
- Public Attributes inherited from smica.component.Component
 mu
 
 sigma_inv
 

Detailed Description

Source.


A source component.

Sources component contribute to the covariance R_q via a mixing
matrix A, which is constant over bins, plus its auto and cross
power spectra P_q. That is R_q = A P_q A'. The dimension of the
component is the number of columns of the mixing matrix A. A
component with a dimension greater than 1 stands for a correlated
sources.

Constructor & Destructor Documentation

def smica.component.Source.__init__ (   self,
  ndet,
  nbin,
  dim,
  name = None 
)
Initialize component parameters arrays.

Parameters
----------
ndet : number of detectors
nbin : number of bins
dim : dimension of the correlated component
name : name of the component

Member Function Documentation

def smica.component.Source.autopowspec (   self,
  bin = None 
)
Return auto power spectra array.

Parameters
----------
bin : bin number. If None, complete array is returned.

Returns
-------
array, shape (dim, nbin).
def smica.component.Source.covariance (   self,
  bin = None 
)
Return the covariance matrix(ces) (ie the contribution to the covariance of the model).

Parameters
----------
bin : bin number. If None, return all matrices in a three dimensional array.

Returns
-------
array, shape (ndet, ndet, nbin).
def smica.component.Source.fix_mixmat (   self,
  fixed 
)
Fix entries of mixing matrix.

Parameters
----------
fixed : array-like, shape (ndet, dim)
Entries which are not equal to zero point to
fixed indices.  It is also possible to use keywords 'all' and
'null' to fix (respectively) all parameters or none.
def smica.component.Source.fix_powspec (   self,
  fixed 
)
Fix entries of power spectra array.

Parameters
----------
fixed : array-like, shape (dim, dim, nbin)
Entries which are not equal to zero point to
fixed indices.  It is also possible to use keywords 'all' and
'null' to fix (respectively) all parameters or none.
def smica.component.Source.mixmat (   self)
Return mixing matrix.

Returns
-------
array, shape (ndet, dim).
def smica.component.Source.plot_mixmat (   self,
  freqlist = None,
  compname = None,
  figfile = None 
)
Plot mixing matrix array.

Parameters
----------
freqlist : array-like, shape (ndet, 1), x axis values.
compname : list, length (dim), column labels.
figfile : string, filename where to save the plot.
def smica.component.Source.plot_powspec (   self,
  compname = None,
  figfile = None 
)
Plot power spectra array.

Parameters
----------
compname : list, length (dim), plot labels.
figfile : string, filename where to save the plot.
def smica.component.Source.powspec (   self,
  bin = None 
)
Return power spectra array.

Parameters
----------
bin : bin number. If None, complete array is returned.

Returns
-------
array, shape (dim, dim, nbin).
def smica.component.Source.score_mixmat (   self,
  D 
)
Return first derivative of the likelihood wrt mixing matrix parameters.

Parameters
----------
D : array-like, shape (ndet, ndet, nbin).
D is the first derivative of the likelihood wrt the covariance
of the model, which is constant for all components.

Returns
-------
array, shape (ndet, dim).
The score of fixed parameters is set to zero.
def smica.component.Source.score_powspec (   self,
  D 
)
Return first derivative of the likelihood wrt power spectra parameters.

Parameters
----------
D : array-like, shape (ndet, ndet, nbin).
D is the first derivative of the likelihood wrt the covariance
of the model, which is constant for all components.
B : array-like, shape (ndet, ndet, nbin).
B is the instrument covariance if any

Returns
-------
array, shape (dim, dim, nbin).
The score of fixed parameters is set to zero.
def smica.component.Source.set_dim (   self,
  dim 
)
Set the dimension of the component. 
def smica.component.Source.set_mixmat (   self,
  mixmat,
  fixed = None 
)
Set mixing matrix.

Parameters
----------
mixmat : array-like, shape (ndet, dim).
fixed : array-like, shape (ndet, dim)
Entries which are not equal to zero point to
fixed indices.  It is also possible to use keywords 'all' and
'null' to fix (respectively) all parameters or none.
def smica.component.Source.set_powspec (   self,
  powspec,
  bin = None,
  fixed = None 
)
Set power spectra array.

Parameters
----------
powspec : array-like, shape (dim, dim, nbin).
bin : bin number. If None, all bins are set.
fixed : array-like, shape (dim, dim, nbin)
Entries which are not equal to zero point to
fixed indices.  It is also possible to use keywords 'all' and
'null' to fix (respectively) all parameters or none.

The documentation for this class was generated from the following file: