SMICA  1.0
Public Member Functions | Public Attributes | List of all members
smica.component.Source1D Class Reference

Source1D. More...

Inheritance diagram for smica.component.Source1D:
smica.component.Source smica.component.Component smica.component.Source1Dexp

Public Member Functions

def __init__
 
def get_dim
 
def set_theta
 
def get_theta
 
def get_thetascore
 
def get_thetaroot
 
def get_thetaroot_local
 
def get_thetafim
 
def close_form
 
- Public Member Functions inherited from smica.component.Source
def is_astro
 
def set_dim
 
def __init__
 
def set_mixmat
 
def fix_mixmat
 
def set_powspec
 
def fix_powspec
 
def mixmat
 
def powspec
 
def autopowspec
 
def covariance
 
def score_mixmat
 
def score_powspec
 
def plot_mixmat
 
def plot_powspec
 
- Public Member Functions inherited from smica.component.Component
def plot_power
 
def plot_em
 
def set_gaussian_prior
 
def get_penalty
 
def get_score_penalty
 
def get_fim_penalty
 

Public Attributes

 ndet
 
 nbin
 
 name
 
- Public Attributes inherited from smica.component.Source
 dim
 
 ndet
 
 nbin
 
 name
 
- Public Attributes inherited from smica.component.Component
 mu
 
 sigma_inv
 

Detailed Description

Source1D.


A one dimensional source component.

The mixing matrix is a column vector (ndet, 1) and power
spectrum is described by a vector (1, nbin).

Constructor & Destructor Documentation

def smica.component.Source1D.__init__ (   self,
  ndet,
  nbin,
  name = None 
)
Initialize component parameters arrays.

Parameters
----------
ndet : number of detectors
nbin : number of bins
name : name of the component

Member Function Documentation

def smica.component.Source1D.close_form (   self,
  stats,
  N 
)
Update local parameters (ie power spectra array) using a close form algorithm.

Parameters
----------
stats : array-like, shape (ndet, ndet, nbin).
Second order statistics ie empirical covariance matrices of
the observations.
N : array-like, shape (ndet, ndet, nbin).
Covariance matrices of the model deprived from the
contribution of the component.
def smica.component.Source1D.get_dim (   self)
Return the number of free parameters of the component.
def smica.component.Source1D.get_theta (   self,
  mixmat = None,
  powspec = None 
)
Return component parameters as a vector.

Parameters
----------
mixmat : array-like, shape (ndet, 1).
If None, values are read from inner mixing matrix.
powspec : array-like, shape (1, nbin).
If None, values are read from inner power spectrum.

Returns
----------
array-like, shape (N, 1), where N is the number of free parameters.
def smica.component.Source1D.get_thetafim (   self,
  iRr,
  w 
)
Return Fisher Information Matrix.

Parameters
----------
iRr : array-like, shape (ndet, ndet, nbin).
iRr is the square root of the inverse of the covariance of the
model, which is constant for all components.
w : array-like, shape (1, nbin). w is half the number of modes for each bin.

Returns
----------
array-like, shape (N, N), where N is the number of free parameters.
def smica.component.Source1D.get_thetaroot (   self,
  iRr,
  bin = 0 
)
Return root contribution to the Fisher Information Matrix of
global parameters for a given bin.

Parameters
----------
iRr : array-like, shape (ndet, ndet).
iRr is the square root of the inverse of the covariance of the
model, which is constant for all components.
bin : int, bin number

Returns
----------
array-like, shape (mxm, N), where N is the number of free parameters.
def smica.component.Source1D.get_thetaroot_local (   self,
  iRr,
  Bq,
  bin = 0 
)
Return root contribution to the Fisher Information Matrix of
local parameters for a given bin.

Parameters
----------
iRr : array-like, shape (ndet, ndet).
  iRr is the square root of the inverse of the covariance of
  the model, which is constant for all components.

Bq : array-like, shape (ndet, ndet).
  Bq is the beam matrix at bin q

q : int
  The bin number

Returns
-------
  array-like, shape (ndet * ndet, N), where N is the number of
  local free parameters and ndet the number of detectors.
def smica.component.Source1D.get_thetascore (   self,
  D 
)
Return likelihood first derivative values wrt component
parameters as a vector.

Parameters
----------
D : array-like, shape (ndet, ndet, nbin).
D is the first derivative of the likelihood wrt the covariance
of the model, which is constant for all components.

Returns
----------
array-like, shape (N, 1), where N is the number of free parameters.
def smica.component.Source1D.set_theta (   self,
  theta 
)
Set new values for component parameters.

Parameters
----------
theta : array-like, shape (N, 1), where N is the number of free parameters.

The documentation for this class was generated from the following file: