Geant4-11
deflate.c
Go to the documentation of this file.
1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50
51#include "deflate.h"
52
53const char deflate_copyright[] =
54 " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
55/*
56 If you use the zlib library in a product, an acknowledgment is welcome
57 in the documentation of your product. If for some reason you cannot
58 include such an acknowledgment, I would appreciate that you keep this
59 copyright string in the executable of your product.
60 */
61
62/* ===========================================================================
63 * Function prototypes.
64 */
65typedef enum {
66 need_more, /* block not completed, need more input or more output */
67 block_done, /* block flush performed */
68 finish_started, /* finish started, need only more output at next deflate */
69 finish_done /* finish done, accept no more input or output */
71
72typedef block_state (*compress_func) OF((deflate_state *s, int flush));
73/* Compression function. Returns the block state after the call. */
74
80#ifndef FASTEST
82#endif
87local void flush_pending OF((z_streamp strm));
88local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
89#ifdef ASMV
90# pragma message("Assembler code may have bugs -- use at your own risk")
91 void match_init OF((void)); /* asm code initialization */
92 uInt longest_match OF((deflate_state *s, IPos cur_match));
93#else
95#endif
96
97#ifdef ZLIB_DEBUG
98local void check_match OF((deflate_state *s, IPos start, IPos match,
99 int length));
100#endif
101
102/* ===========================================================================
103 * Local data
104 */
105
106#define NIL 0
107/* Tail of hash chains */
108
109#ifndef TOO_FAR
110# define TOO_FAR 4096
111#endif
112/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
113
114/* Values for max_lazy_match, good_match and max_chain_length, depending on
115 * the desired pack level (0..9). The values given below have been tuned to
116 * exclude worst case performance for pathological files. Better values may be
117 * found for specific files.
118 */
119typedef struct config_s {
120 ush good_length; /* reduce lazy search above this match length */
121 ush max_lazy; /* do not perform lazy search above this match length */
122 ush nice_length; /* quit search above this match length */
124 compress_func func;
126
127#ifdef FASTEST
129/* good lazy nice chain */
130/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
131/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
132#else
134/* good lazy nice chain */
135/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
136/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
137/* 2 */ {4, 5, 16, 8, deflate_fast},
138/* 3 */ {4, 6, 32, 32, deflate_fast},
139
140/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
141/* 5 */ {8, 16, 32, 32, deflate_slow},
142/* 6 */ {8, 16, 128, 128, deflate_slow},
143/* 7 */ {8, 32, 128, 256, deflate_slow},
144/* 8 */ {32, 128, 258, 1024, deflate_slow},
145/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
146#endif
147
148/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
149 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
150 * meaning.
151 */
152
153/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
154#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
155
156/* ===========================================================================
157 * Update a hash value with the given input byte
158 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
159 * characters, so that a running hash key can be computed from the previous
160 * key instead of complete recalculation each time.
161 */
162#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
163
164
165/* ===========================================================================
166 * Insert string str in the dictionary and set match_head to the previous head
167 * of the hash chain (the most recent string with same hash key). Return
168 * the previous length of the hash chain.
169 * If this file is compiled with -DFASTEST, the compression level is forced
170 * to 1, and no hash chains are maintained.
171 * IN assertion: all calls to INSERT_STRING are made with consecutive input
172 * characters and the first MIN_MATCH bytes of str are valid (except for
173 * the last MIN_MATCH-1 bytes of the input file).
174 */
175#ifdef FASTEST
176#define INSERT_STRING(s, str, match_head) \
177 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
178 match_head = s->head[s->ins_h], \
179 s->head[s->ins_h] = (Pos)(str))
180#else
181#define INSERT_STRING(s, str, match_head) \
182 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
183 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
184 s->head[s->ins_h] = (Pos)(str))
185#endif
186
187/* ===========================================================================
188 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
189 * prev[] will be initialized on the fly.
190 */
191#define CLEAR_HASH(s) \
192 s->head[s->hash_size-1] = NIL; \
193 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
194
195/* ===========================================================================
196 * Slide the hash table when sliding the window down (could be avoided with 32
197 * bit values at the expense of memory usage). We slide even when level == 0 to
198 * keep the hash table consistent if we switch back to level > 0 later.
199 */
202{
203 unsigned n, m;
204 Posf *p;
205 uInt wsize = s->w_size;
206
207 n = s->hash_size;
208 p = &s->head[n];
209 do {
210 m = *--p;
211 *p = (Pos)(m >= wsize ? m - wsize : NIL);
212 } while (--n);
213 n = wsize;
214#ifndef FASTEST
215 p = &s->prev[n];
216 do {
217 m = *--p;
218 *p = (Pos)(m >= wsize ? m - wsize : NIL);
219 /* If n is not on any hash chain, prev[n] is garbage but
220 * its value will never be used.
221 */
222 } while (--n);
223#endif
224}
225
226/* ========================================================================= */
227int ZEXPORT deflateInit_(strm, level, version, stream_size)
228 z_streamp strm;
229 int level;
230 const char *version;
231 int stream_size;
232{
233 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
234 Z_DEFAULT_STRATEGY, version, stream_size);
235 /* To do: ignore strm->next_in if we use it as window */
236}
237
238/* ========================================================================= */
239int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
240 version, stream_size)
241 z_streamp strm;
242 int level;
243 int method;
244 int windowBits;
245 int memLevel;
246 int strategy;
247 const char *version;
248 int stream_size;
249{
251 int wrap = 1;
252 static const char my_version[] = ZLIB_VERSION;
253
254 ushf *overlay;
255 /* We overlay pending_buf and d_buf+l_buf. This works since the average
256 * output size for (length,distance) codes is <= 24 bits.
257 */
258
259 if (version == Z_NULL || version[0] != my_version[0] ||
260 stream_size != sizeof(z_stream)) {
261 return Z_VERSION_ERROR;
262 }
263 if (strm == Z_NULL) return Z_STREAM_ERROR;
264
265 strm->msg = Z_NULL;
266 if (strm->zalloc == (alloc_func)0) {
267#ifdef Z_SOLO
268 return Z_STREAM_ERROR;
269#else
270 strm->zalloc = zcalloc;
271 strm->opaque = (voidpf)0;
272#endif
273 }
274 if (strm->zfree == (free_func)0)
275#ifdef Z_SOLO
276 return Z_STREAM_ERROR;
277#else
278 strm->zfree = zcfree;
279#endif
280
281#ifdef FASTEST
282 if (level != 0) level = 1;
283#else
284 if (level == Z_DEFAULT_COMPRESSION) level = 6;
285#endif
286
287 if (windowBits < 0) { /* suppress zlib wrapper */
288 wrap = 0;
289 windowBits = -windowBits;
290 }
291#ifdef GZIP
292 else if (windowBits > 15) {
293 wrap = 2; /* write gzip wrapper instead */
294 windowBits -= 16;
295 }
296#endif
297 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
298 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
299 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
300 return Z_STREAM_ERROR;
301 }
302 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
303 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
304 if (s == Z_NULL) return Z_MEM_ERROR;
305 strm->state = (struct internal_state FAR *)s;
306 s->strm = strm;
307 s->status = INIT_STATE; /* to pass state test in deflateReset() */
308
309 s->wrap = wrap;
310 s->gzhead = Z_NULL;
311 s->w_bits = (uInt)windowBits;
312 s->w_size = 1 << s->w_bits;
313 s->w_mask = s->w_size - 1;
314
315 s->hash_bits = (uInt)memLevel + 7;
316 s->hash_size = 1 << s->hash_bits;
317 s->hash_mask = s->hash_size - 1;
318 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
319
320 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
321 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
322 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
323
324 s->high_water = 0; /* nothing written to s->window yet */
325
326 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
327
328 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
329 s->pending_buf = (uchf *) overlay;
330 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
331
332 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
333 s->pending_buf == Z_NULL) {
334 s->status = FINISH_STATE;
335 strm->msg = ERR_MSG(Z_MEM_ERROR);
337 return Z_MEM_ERROR;
338 }
339 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
340 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
341
342 s->level = level;
343 s->strategy = strategy;
344 s->method = (Byte)method;
345
346 return deflateReset(strm);
347}
348
349/* =========================================================================
350 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
351 */
354{
356 if (strm == Z_NULL ||
357 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
358 return 1;
359 s = strm->state;
360 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
361#ifdef GZIP
362 s->status != GZIP_STATE &&
363#endif
364 s->status != EXTRA_STATE &&
365 s->status != NAME_STATE &&
366 s->status != COMMENT_STATE &&
367 s->status != HCRC_STATE &&
368 s->status != BUSY_STATE &&
369 s->status != FINISH_STATE))
370 return 1;
371 return 0;
372}
373
374/* ========================================================================= */
375int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
377 const Bytef *dictionary;
378 uInt dictLength;
379{
381 uInt str, n;
382 int wrap;
383 unsigned avail;
384 z_const unsigned char *next;
385
386 if (deflateStateCheck(strm) || dictionary == Z_NULL)
387 return Z_STREAM_ERROR;
388 s = strm->state;
389 wrap = s->wrap;
390 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
391 return Z_STREAM_ERROR;
392
393 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
394 if (wrap == 1)
395 strm->adler = adler32(strm->adler, dictionary, dictLength);
396 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
397
398 /* if dictionary would fill window, just replace the history */
399 if (dictLength >= s->w_size) {
400 if (wrap == 0) { /* already empty otherwise */
401 CLEAR_HASH(s);
402 s->strstart = 0;
403 s->block_start = 0L;
404 s->insert = 0;
405 }
406 dictionary += dictLength - s->w_size; /* use the tail */
407 dictLength = s->w_size;
408 }
409
410 /* insert dictionary into window and hash */
411 avail = strm->avail_in;
412 next = strm->next_in;
413 strm->avail_in = dictLength;
414 strm->next_in = (z_const Bytef *)dictionary;
415 fill_window(s);
416 while (s->lookahead >= MIN_MATCH) {
417 str = s->strstart;
418 n = s->lookahead - (MIN_MATCH-1);
419 do {
420 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
421#ifndef FASTEST
422 s->prev[str & s->w_mask] = s->head[s->ins_h];
423#endif
424 s->head[s->ins_h] = (Pos)str;
425 str++;
426 } while (--n);
427 s->strstart = str;
428 s->lookahead = MIN_MATCH-1;
429 fill_window(s);
430 }
431 s->strstart += s->lookahead;
432 s->block_start = (long)s->strstart;
433 s->insert = s->lookahead;
434 s->lookahead = 0;
435 s->match_length = s->prev_length = MIN_MATCH-1;
436 s->match_available = 0;
437 strm->next_in = next;
438 strm->avail_in = avail;
439 s->wrap = wrap;
440 return Z_OK;
441}
442
443/* ========================================================================= */
444int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
446 Bytef *dictionary;
447 uInt *dictLength;
448{
450 uInt len;
451
453 return Z_STREAM_ERROR;
454 s = strm->state;
455 len = s->strstart + s->lookahead;
456 if (len > s->w_size)
457 len = s->w_size;
458 if (dictionary != Z_NULL && len)
459 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
460 if (dictLength != Z_NULL)
461 *dictLength = len;
462 return Z_OK;
463}
464
465/* ========================================================================= */
468{
470
471 if (deflateStateCheck(strm)) {
472 return Z_STREAM_ERROR;
473 }
474
475 strm->total_in = strm->total_out = 0;
476 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
477 strm->data_type = Z_UNKNOWN;
478
479 s = (deflate_state *)strm->state;
480 s->pending = 0;
481 s->pending_out = s->pending_buf;
482
483 if (s->wrap < 0) {
484 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
485 }
486 s->status =
487#ifdef GZIP
488 s->wrap == 2 ? GZIP_STATE :
489#endif
490 s->wrap ? INIT_STATE : BUSY_STATE;
491 strm->adler =
492#ifdef GZIP
493 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
494#endif
495 adler32(0L, Z_NULL, 0);
496 s->last_flush = Z_NO_FLUSH;
497
498 _tr_init(s);
499
500 return Z_OK;
501}
502
503/* ========================================================================= */
504int ZEXPORT deflateReset (strm)
506{
507 int ret;
508
509 ret = deflateResetKeep(strm);
510 if (ret == Z_OK)
511 lm_init(strm->state);
512 return ret;
513}
514
515/* ========================================================================= */
519{
520 if (deflateStateCheck(strm) || strm->state->wrap != 2)
521 return Z_STREAM_ERROR;
522 strm->state->gzhead = head;
523 return Z_OK;
524}
525
526/* ========================================================================= */
527int ZEXPORT deflatePending (strm, pending, bits)
528 unsigned *pending;
529 int *bits;
531{
533 if (pending != Z_NULL)
534 *pending = strm->state->pending;
535 if (bits != Z_NULL)
536 *bits = strm->state->bi_valid;
537 return Z_OK;
538}
539
540/* ========================================================================= */
541int ZEXPORT deflatePrime (strm, bits, value)
543 int bits;
544 int value;
545{
547 int put;
548
550 s = strm->state;
551 if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
552 return Z_BUF_ERROR;
553 do {
554 put = Buf_size - s->bi_valid;
555 if (put > bits)
556 put = bits;
557 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
558 s->bi_valid += put;
560 value >>= put;
561 bits -= put;
562 } while (bits);
563 return Z_OK;
564}
565
566/* ========================================================================= */
569 int level;
570 int strategy;
571{
573 compress_func func;
574
576 s = strm->state;
577
578#ifdef FASTEST
579 if (level != 0) level = 1;
580#else
582#endif
583 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
584 return Z_STREAM_ERROR;
585 }
586 func = configuration_table[s->level].func;
587
588 if ((strategy != s->strategy || func != configuration_table[level].func) &&
589 s->high_water) {
590 /* Flush the last buffer: */
591 int err = deflate(strm, Z_BLOCK);
592 if (err == Z_STREAM_ERROR)
593 return err;
594 if (strm->avail_out == 0)
595 return Z_BUF_ERROR;
596 }
597 if (s->level != level) {
598 if (s->level == 0 && s->matches != 0) {
599 if (s->matches == 1)
600 slide_hash(s);
601 else
602 CLEAR_HASH(s);
603 s->matches = 0;
604 }
605 s->level = level;
606 s->max_lazy_match = configuration_table[level].max_lazy;
607 s->good_match = configuration_table[level].good_length;
608 s->nice_match = configuration_table[level].nice_length;
609 s->max_chain_length = configuration_table[level].max_chain;
610 }
611 s->strategy = strategy;
612 return Z_OK;
613}
614
615/* ========================================================================= */
616int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
618 int good_length;
619 int max_lazy;
620 int nice_length;
621 int max_chain;
622{
624
626 s = strm->state;
627 s->good_match = (uInt)good_length;
628 s->max_lazy_match = (uInt)max_lazy;
629 s->nice_match = nice_length;
630 s->max_chain_length = (uInt)max_chain;
631 return Z_OK;
632}
633
634/* =========================================================================
635 * For the default windowBits of 15 and memLevel of 8, this function returns
636 * a close to exact, as well as small, upper bound on the compressed size.
637 * They are coded as constants here for a reason--if the #define's are
638 * changed, then this function needs to be changed as well. The return
639 * value for 15 and 8 only works for those exact settings.
640 *
641 * For any setting other than those defaults for windowBits and memLevel,
642 * the value returned is a conservative worst case for the maximum expansion
643 * resulting from using fixed blocks instead of stored blocks, which deflate
644 * can emit on compressed data for some combinations of the parameters.
645 *
646 * This function could be more sophisticated to provide closer upper bounds for
647 * every combination of windowBits and memLevel. But even the conservative
648 * upper bound of about 14% expansion does not seem onerous for output buffer
649 * allocation.
650 */
651uLong ZEXPORT deflateBound(strm, sourceLen)
653 uLong sourceLen;
654{
656 uLong complen, wraplen;
657
658 /* conservative upper bound for compressed data */
659 complen = sourceLen +
660 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
661
662 /* if can't get parameters, return conservative bound plus zlib wrapper */
664 return complen + 6;
665
666 /* compute wrapper length */
667 s = strm->state;
668 switch (s->wrap) {
669 case 0: /* raw deflate */
670 wraplen = 0;
671 break;
672 case 1: /* zlib wrapper */
673 wraplen = 6 + (s->strstart ? 4 : 0);
674 break;
675#ifdef GZIP
676 case 2: /* gzip wrapper */
677 wraplen = 18;
678 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
679 Bytef *str;
680 if (s->gzhead->extra != Z_NULL)
681 wraplen += 2 + s->gzhead->extra_len;
682 str = s->gzhead->name;
683 if (str != Z_NULL)
684 do {
685 wraplen++;
686 } while (*str++);
687 str = s->gzhead->comment;
688 if (str != Z_NULL)
689 do {
690 wraplen++;
691 } while (*str++);
692 if (s->gzhead->hcrc)
693 wraplen += 2;
694 }
695 break;
696#endif
697 default: /* for compiler happiness */
698 wraplen = 6;
699 }
700
701 /* if not default parameters, return conservative bound */
702 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
703 return complen + wraplen;
704
705 /* default settings: return tight bound for that case */
706 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
707 (sourceLen >> 25) + 13 - 6 + wraplen;
708}
709
710/* =========================================================================
711 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
712 * IN assertion: the stream state is correct and there is enough room in
713 * pending_buf.
714 */
717 uInt b;
718{
719 put_byte(s, (Byte)(b >> 8));
720 put_byte(s, (Byte)(b & 0xff));
721}
722
723/* =========================================================================
724 * Flush as much pending output as possible. All deflate() output, except for
725 * some deflate_stored() output, goes through this function so some
726 * applications may wish to modify it to avoid allocating a large
727 * strm->next_out buffer and copying into it. (See also read_buf()).
728 */
731{
732 unsigned len;
733 deflate_state *s = strm->state;
734
736 len = s->pending;
737 if (len > strm->avail_out) len = strm->avail_out;
738 if (len == 0) return;
739
740 zmemcpy(strm->next_out, s->pending_out, len);
741 strm->next_out += len;
742 s->pending_out += len;
743 strm->total_out += len;
744 strm->avail_out -= len;
745 s->pending -= len;
746 if (s->pending == 0) {
747 s->pending_out = s->pending_buf;
748 }
749}
750
751/* ===========================================================================
752 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
753 */
754#define HCRC_UPDATE(beg) \
755 do { \
756 if (s->gzhead->hcrc && s->pending > (beg)) \
757 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
758 s->pending - (beg)); \
759 } while (0)
760
761/* ========================================================================= */
762int ZEXPORT deflate (strm, flush)
764 int flush;
765{
766 int old_flush; /* value of flush param for previous deflate call */
768
769 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
770 return Z_STREAM_ERROR;
771 }
772 s = strm->state;
773
774 if (strm->next_out == Z_NULL ||
775 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
776 (s->status == FINISH_STATE && flush != Z_FINISH)) {
778 }
779 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
780
781 old_flush = s->last_flush;
782 s->last_flush = flush;
783
784 /* Flush as much pending output as possible */
785 if (s->pending != 0) {
787 if (strm->avail_out == 0) {
788 /* Since avail_out is 0, deflate will be called again with
789 * more output space, but possibly with both pending and
790 * avail_in equal to zero. There won't be anything to do,
791 * but this is not an error situation so make sure we
792 * return OK instead of BUF_ERROR at next call of deflate:
793 */
794 s->last_flush = -1;
795 return Z_OK;
796 }
797
798 /* Make sure there is something to do and avoid duplicate consecutive
799 * flushes. For repeated and useless calls with Z_FINISH, we keep
800 * returning Z_STREAM_END instead of Z_BUF_ERROR.
801 */
802 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
803 flush != Z_FINISH) {
805 }
806
807 /* User must not provide more input after the first FINISH: */
808 if (s->status == FINISH_STATE && strm->avail_in != 0) {
810 }
811
812 /* Write the header */
813 if (s->status == INIT_STATE) {
814 /* zlib header */
815 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
816 uInt level_flags;
817
818 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
819 level_flags = 0;
820 else if (s->level < 6)
821 level_flags = 1;
822 else if (s->level == 6)
823 level_flags = 2;
824 else
825 level_flags = 3;
826 header |= (level_flags << 6);
827 if (s->strstart != 0) header |= PRESET_DICT;
828 header += 31 - (header % 31);
829
830 putShortMSB(s, header);
831
832 /* Save the adler32 of the preset dictionary: */
833 if (s->strstart != 0) {
834 putShortMSB(s, (uInt)(strm->adler >> 16));
835 putShortMSB(s, (uInt)(strm->adler & 0xffff));
836 }
837 strm->adler = adler32(0L, Z_NULL, 0);
838 s->status = BUSY_STATE;
839
840 /* Compression must start with an empty pending buffer */
842 if (s->pending != 0) {
843 s->last_flush = -1;
844 return Z_OK;
845 }
846 }
847#ifdef GZIP
848 if (s->status == GZIP_STATE) {
849 /* gzip header */
850 strm->adler = crc32(0L, Z_NULL, 0);
851 put_byte(s, 31);
852 put_byte(s, 139);
853 put_byte(s, 8);
854 if (s->gzhead == Z_NULL) {
855 put_byte(s, 0);
856 put_byte(s, 0);
857 put_byte(s, 0);
858 put_byte(s, 0);
859 put_byte(s, 0);
860 put_byte(s, s->level == 9 ? 2 :
861 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
862 4 : 0));
864 s->status = BUSY_STATE;
865
866 /* Compression must start with an empty pending buffer */
868 if (s->pending != 0) {
869 s->last_flush = -1;
870 return Z_OK;
871 }
872 }
873 else {
874 put_byte(s, (s->gzhead->text ? 1 : 0) +
875 (s->gzhead->hcrc ? 2 : 0) +
876 (s->gzhead->extra == Z_NULL ? 0 : 4) +
877 (s->gzhead->name == Z_NULL ? 0 : 8) +
878 (s->gzhead->comment == Z_NULL ? 0 : 16)
879 );
880 put_byte(s, (Byte)(s->gzhead->time & 0xff));
881 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
882 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
883 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
884 put_byte(s, s->level == 9 ? 2 :
885 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
886 4 : 0));
887 put_byte(s, s->gzhead->os & 0xff);
888 if (s->gzhead->extra != Z_NULL) {
889 put_byte(s, s->gzhead->extra_len & 0xff);
890 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
891 }
892 if (s->gzhead->hcrc)
893 strm->adler = crc32(strm->adler, s->pending_buf,
894 s->pending);
895 s->gzindex = 0;
896 s->status = EXTRA_STATE;
897 }
898 }
899 if (s->status == EXTRA_STATE) {
900 if (s->gzhead->extra != Z_NULL) {
901 ulg beg = s->pending; /* start of bytes to update crc */
902 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
903 while (s->pending + left > s->pending_buf_size) {
904 uInt copy = s->pending_buf_size - s->pending;
905 zmemcpy(s->pending_buf + s->pending,
906 s->gzhead->extra + s->gzindex, copy);
907 s->pending = s->pending_buf_size;
908 HCRC_UPDATE(beg);
909 s->gzindex += copy;
911 if (s->pending != 0) {
912 s->last_flush = -1;
913 return Z_OK;
914 }
915 beg = 0;
916 left -= copy;
917 }
918 zmemcpy(s->pending_buf + s->pending,
919 s->gzhead->extra + s->gzindex, left);
920 s->pending += left;
921 HCRC_UPDATE(beg);
922 s->gzindex = 0;
923 }
924 s->status = NAME_STATE;
925 }
926 if (s->status == NAME_STATE) {
927 if (s->gzhead->name != Z_NULL) {
928 ulg beg = s->pending; /* start of bytes to update crc */
929 int val;
930 do {
931 if (s->pending == s->pending_buf_size) {
932 HCRC_UPDATE(beg);
934 if (s->pending != 0) {
935 s->last_flush = -1;
936 return Z_OK;
937 }
938 beg = 0;
939 }
940 val = s->gzhead->name[s->gzindex++];
941 put_byte(s, val);
942 } while (val != 0);
943 HCRC_UPDATE(beg);
944 s->gzindex = 0;
945 }
946 s->status = COMMENT_STATE;
947 }
948 if (s->status == COMMENT_STATE) {
949 if (s->gzhead->comment != Z_NULL) {
950 ulg beg = s->pending; /* start of bytes to update crc */
951 int val;
952 do {
953 if (s->pending == s->pending_buf_size) {
954 HCRC_UPDATE(beg);
956 if (s->pending != 0) {
957 s->last_flush = -1;
958 return Z_OK;
959 }
960 beg = 0;
961 }
962 val = s->gzhead->comment[s->gzindex++];
963 put_byte(s, val);
964 } while (val != 0);
965 HCRC_UPDATE(beg);
966 }
967 s->status = HCRC_STATE;
968 }
969 if (s->status == HCRC_STATE) {
970 if (s->gzhead->hcrc) {
971 if (s->pending + 2 > s->pending_buf_size) {
973 if (s->pending != 0) {
974 s->last_flush = -1;
975 return Z_OK;
976 }
977 }
978 put_byte(s, (Byte)(strm->adler & 0xff));
979 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
980 strm->adler = crc32(0L, Z_NULL, 0);
981 }
982 s->status = BUSY_STATE;
983
984 /* Compression must start with an empty pending buffer */
986 if (s->pending != 0) {
987 s->last_flush = -1;
988 return Z_OK;
989 }
990 }
991#endif
992
993 /* Start a new block or continue the current one.
994 */
995 if (strm->avail_in != 0 || s->lookahead != 0 ||
996 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
997 block_state bstate;
998
999 bstate = s->level == 0 ? deflate_stored(s, flush) :
1000 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1001 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1002 (*(configuration_table[s->level].func))(s, flush);
1003
1004 if (bstate == finish_started || bstate == finish_done) {
1005 s->status = FINISH_STATE;
1006 }
1007 if (bstate == need_more || bstate == finish_started) {
1008 if (strm->avail_out == 0) {
1009 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1010 }
1011 return Z_OK;
1012 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1013 * of deflate should use the same flush parameter to make sure
1014 * that the flush is complete. So we don't have to output an
1015 * empty block here, this will be done at next call. This also
1016 * ensures that for a very small output buffer, we emit at most
1017 * one empty block.
1018 */
1019 }
1020 if (bstate == block_done) {
1021 if (flush == Z_PARTIAL_FLUSH) {
1022 _tr_align(s);
1023 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1024 _tr_stored_block(s, (char*)0, 0L, 0);
1025 /* For a full flush, this empty block will be recognized
1026 * as a special marker by inflate_sync().
1027 */
1028 if (flush == Z_FULL_FLUSH) {
1029 CLEAR_HASH(s); /* forget history */
1030 if (s->lookahead == 0) {
1031 s->strstart = 0;
1032 s->block_start = 0L;
1033 s->insert = 0;
1034 }
1035 }
1036 }
1038 if (strm->avail_out == 0) {
1039 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1040 return Z_OK;
1041 }
1042 }
1043 }
1044
1045 if (flush != Z_FINISH) return Z_OK;
1046 if (s->wrap <= 0) return Z_STREAM_END;
1047
1048 /* Write the trailer */
1049#ifdef GZIP
1050 if (s->wrap == 2) {
1051 put_byte(s, (Byte)(strm->adler & 0xff));
1052 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1053 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1054 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1055 put_byte(s, (Byte)(strm->total_in & 0xff));
1056 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1057 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1058 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1059 }
1060 else
1061#endif
1062 {
1063 putShortMSB(s, (uInt)(strm->adler >> 16));
1064 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1065 }
1067 /* If avail_out is zero, the application will call deflate again
1068 * to flush the rest.
1069 */
1070 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1071 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1072}
1073
1074/* ========================================================================= */
1075int ZEXPORT deflateEnd (strm)
1077{
1078 int status;
1079
1081
1082 status = strm->state->status;
1083
1084 /* Deallocate in reverse order of allocations: */
1085 TRY_FREE(strm, strm->state->pending_buf);
1086 TRY_FREE(strm, strm->state->head);
1087 TRY_FREE(strm, strm->state->prev);
1088 TRY_FREE(strm, strm->state->window);
1089
1090 ZFREE(strm, strm->state);
1091 strm->state = Z_NULL;
1092
1093 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1094}
1095
1096/* =========================================================================
1097 * Copy the source state to the destination state.
1098 * To simplify the source, this is not supported for 16-bit MSDOS (which
1099 * doesn't have enough memory anyway to duplicate compression states).
1100 */
1101int ZEXPORT deflateCopy (dest, source)
1102 z_streamp dest;
1104{
1105#ifdef MAXSEG_64K
1106 return Z_STREAM_ERROR;
1107#else
1109 deflate_state *ss;
1110 ushf *overlay;
1111
1112
1113 if (deflateStateCheck(source) || dest == Z_NULL) {
1114 return Z_STREAM_ERROR;
1115 }
1116
1117 ss = source->state;
1118
1119 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1120
1121 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1122 if (ds == Z_NULL) return Z_MEM_ERROR;
1123 dest->state = (struct internal_state FAR *) ds;
1124 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1125 ds->strm = dest;
1126
1127 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1128 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1129 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1130 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1131 ds->pending_buf = (uchf *) overlay;
1132
1133 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1134 ds->pending_buf == Z_NULL) {
1135 deflateEnd (dest);
1136 return Z_MEM_ERROR;
1137 }
1138 /* following zmemcpy do not work for 16-bit MSDOS */
1139 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1140 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1141 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1142 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1143
1144 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1145 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1146 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1147
1148 ds->l_desc.dyn_tree = ds->dyn_ltree;
1149 ds->d_desc.dyn_tree = ds->dyn_dtree;
1150 ds->bl_desc.dyn_tree = ds->bl_tree;
1151
1152 return Z_OK;
1153#endif /* MAXSEG_64K */
1154}
1155
1156/* ===========================================================================
1157 * Read a new buffer from the current input stream, update the adler32
1158 * and total number of bytes read. All deflate() input goes through
1159 * this function so some applications may wish to modify it to avoid
1160 * allocating a large strm->next_in buffer and copying from it.
1161 * (See also flush_pending()).
1162 */
1163local unsigned read_buf(strm, buf, size)
1165 Bytef *buf;
1166 unsigned size;
1167{
1168 unsigned len = strm->avail_in;
1169
1170 if (len > size) len = size;
1171 if (len == 0) return 0;
1172
1173 strm->avail_in -= len;
1174
1175 zmemcpy(buf, strm->next_in, len);
1176 if (strm->state->wrap == 1) {
1177 strm->adler = adler32(strm->adler, buf, len);
1178 }
1179#ifdef GZIP
1180 else if (strm->state->wrap == 2) {
1181 strm->adler = crc32(strm->adler, buf, len);
1182 }
1183#endif
1184 strm->next_in += len;
1185 strm->total_in += len;
1186
1187 return len;
1188}
1189
1190/* ===========================================================================
1191 * Initialize the "longest match" routines for a new zlib stream
1192 */
1195{
1196 s->window_size = (ulg)2L*s->w_size;
1197
1198 CLEAR_HASH(s);
1199
1200 /* Set the default configuration parameters:
1201 */
1202 s->max_lazy_match = configuration_table[s->level].max_lazy;
1203 s->good_match = configuration_table[s->level].good_length;
1204 s->nice_match = configuration_table[s->level].nice_length;
1205 s->max_chain_length = configuration_table[s->level].max_chain;
1206
1207 s->strstart = 0;
1208 s->block_start = 0L;
1209 s->lookahead = 0;
1210 s->insert = 0;
1211 s->match_length = s->prev_length = MIN_MATCH-1;
1212 s->match_available = 0;
1213 s->ins_h = 0;
1214#ifndef FASTEST
1215#ifdef ASMV
1216 match_init(); /* initialize the asm code */
1217#endif
1218#endif
1219}
1220
1221#ifndef FASTEST
1222/* ===========================================================================
1223 * Set match_start to the longest match starting at the given string and
1224 * return its length. Matches shorter or equal to prev_length are discarded,
1225 * in which case the result is equal to prev_length and match_start is
1226 * garbage.
1227 * IN assertions: cur_match is the head of the hash chain for the current
1228 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1229 * OUT assertion: the match length is not greater than s->lookahead.
1230 */
1231#ifndef ASMV
1232/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1233 * match.S. The code will be functionally equivalent.
1234 */
1235local uInt longest_match(s, cur_match)
1237 IPos cur_match; /* current match */
1238{
1239 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1240 register Bytef *scan = s->window + s->strstart; /* current string */
1241 register Bytef *match; /* matched string */
1242 register int len; /* length of current match */
1243 int best_len = (int)s->prev_length; /* best match length so far */
1244 int nice_match = s->nice_match; /* stop if match long enough */
1245 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1246 s->strstart - (IPos)MAX_DIST(s) : NIL;
1247 /* Stop when cur_match becomes <= limit. To simplify the code,
1248 * we prevent matches with the string of window index 0.
1249 */
1250 Posf *prev = s->prev;
1251 uInt wmask = s->w_mask;
1252
1253#ifdef UNALIGNED_OK
1254 /* Compare two bytes at a time. Note: this is not always beneficial.
1255 * Try with and without -DUNALIGNED_OK to check.
1256 */
1257 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1258 register ush scan_start = *(ushf*)scan;
1259 register ush scan_end = *(ushf*)(scan+best_len-1);
1260#else
1261 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1262 register Byte scan_end1 = scan[best_len-1];
1263 register Byte scan_end = scan[best_len];
1264#endif
1265
1266 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1267 * It is easy to get rid of this optimization if necessary.
1268 */
1269 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1270
1271 /* Do not waste too much time if we already have a good match: */
1272 if (s->prev_length >= s->good_match) {
1273 chain_length >>= 2;
1274 }
1275 /* Do not look for matches beyond the end of the input. This is necessary
1276 * to make deflate deterministic.
1277 */
1278 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1279
1280 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1281
1282 do {
1283 Assert(cur_match < s->strstart, "no future");
1284 match = s->window + cur_match;
1285
1286 /* Skip to next match if the match length cannot increase
1287 * or if the match length is less than 2. Note that the checks below
1288 * for insufficient lookahead only occur occasionally for performance
1289 * reasons. Therefore uninitialized memory will be accessed, and
1290 * conditional jumps will be made that depend on those values.
1291 * However the length of the match is limited to the lookahead, so
1292 * the output of deflate is not affected by the uninitialized values.
1293 */
1294#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1295 /* This code assumes sizeof(unsigned short) == 2. Do not use
1296 * UNALIGNED_OK if your compiler uses a different size.
1297 */
1298 if (*(ushf*)(match+best_len-1) != scan_end ||
1299 *(ushf*)match != scan_start) continue;
1300
1301 /* It is not necessary to compare scan[2] and match[2] since they are
1302 * always equal when the other bytes match, given that the hash keys
1303 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1304 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1305 * lookahead only every 4th comparison; the 128th check will be made
1306 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1307 * necessary to put more guard bytes at the end of the window, or
1308 * to check more often for insufficient lookahead.
1309 */
1310 Assert(scan[2] == match[2], "scan[2]?");
1311 scan++, match++;
1312 do {
1313 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1314 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1315 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1316 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1317 scan < strend);
1318 /* The funny "do {}" generates better code on most compilers */
1319
1320 /* Here, scan <= window+strstart+257 */
1321 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1322 if (*scan == *match) scan++;
1323
1324 len = (MAX_MATCH - 1) - (int)(strend-scan);
1325 scan = strend - (MAX_MATCH-1);
1326
1327#else /* UNALIGNED_OK */
1328
1329 if (match[best_len] != scan_end ||
1330 match[best_len-1] != scan_end1 ||
1331 *match != *scan ||
1332 *++match != scan[1]) continue;
1333
1334 /* The check at best_len-1 can be removed because it will be made
1335 * again later. (This heuristic is not always a win.)
1336 * It is not necessary to compare scan[2] and match[2] since they
1337 * are always equal when the other bytes match, given that
1338 * the hash keys are equal and that HASH_BITS >= 8.
1339 */
1340 scan += 2, match++;
1341 Assert(*scan == *match, "match[2]?");
1342
1343 /* We check for insufficient lookahead only every 8th comparison;
1344 * the 256th check will be made at strstart+258.
1345 */
1346 do {
1347 } while (*++scan == *++match && *++scan == *++match &&
1348 *++scan == *++match && *++scan == *++match &&
1349 *++scan == *++match && *++scan == *++match &&
1350 *++scan == *++match && *++scan == *++match &&
1351 scan < strend);
1352
1353 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1354
1355 len = MAX_MATCH - (int)(strend - scan);
1356 scan = strend - MAX_MATCH;
1357
1358#endif /* UNALIGNED_OK */
1359
1360 if (len > best_len) {
1361 s->match_start = cur_match;
1362 best_len = len;
1363 if (len >= nice_match) break;
1364#ifdef UNALIGNED_OK
1365 scan_end = *(ushf*)(scan+best_len-1);
1366#else
1367 scan_end1 = scan[best_len-1];
1368 scan_end = scan[best_len];
1369#endif
1370 }
1371 } while ((cur_match = prev[cur_match & wmask]) > limit
1372 && --chain_length != 0);
1373
1374 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1375 return s->lookahead;
1376}
1377#endif /* ASMV */
1378
1379#else /* FASTEST */
1380
1381/* ---------------------------------------------------------------------------
1382 * Optimized version for FASTEST only
1383 */
1384local uInt longest_match(s, cur_match)
1386 IPos cur_match; /* current match */
1387{
1388 register Bytef *scan = s->window + s->strstart; /* current string */
1389 register Bytef *match; /* matched string */
1390 register int len; /* length of current match */
1391 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1392
1393 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1394 * It is easy to get rid of this optimization if necessary.
1395 */
1396 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1397
1398 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1399
1400 Assert(cur_match < s->strstart, "no future");
1401
1402 match = s->window + cur_match;
1403
1404 /* Return failure if the match length is less than 2:
1405 */
1406 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1407
1408 /* The check at best_len-1 can be removed because it will be made
1409 * again later. (This heuristic is not always a win.)
1410 * It is not necessary to compare scan[2] and match[2] since they
1411 * are always equal when the other bytes match, given that
1412 * the hash keys are equal and that HASH_BITS >= 8.
1413 */
1414 scan += 2, match += 2;
1415 Assert(*scan == *match, "match[2]?");
1416
1417 /* We check for insufficient lookahead only every 8th comparison;
1418 * the 256th check will be made at strstart+258.
1419 */
1420 do {
1421 } while (*++scan == *++match && *++scan == *++match &&
1422 *++scan == *++match && *++scan == *++match &&
1423 *++scan == *++match && *++scan == *++match &&
1424 *++scan == *++match && *++scan == *++match &&
1425 scan < strend);
1426
1427 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1428
1429 len = MAX_MATCH - (int)(strend - scan);
1430
1431 if (len < MIN_MATCH) return MIN_MATCH - 1;
1432
1433 s->match_start = cur_match;
1434 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1435}
1436
1437#endif /* FASTEST */
1438
1439#ifdef ZLIB_DEBUG
1440
1441#define EQUAL 0
1442/* result of memcmp for equal strings */
1443
1444/* ===========================================================================
1445 * Check that the match at match_start is indeed a match.
1446 */
1447local void check_match(s, start, match, length)
1449 IPos start, match;
1450 int length;
1451{
1452 /* check that the match is indeed a match */
1453 if (zmemcmp(s->window + match,
1454 s->window + start, length) != EQUAL) {
1455 fprintf(stderr, " start %u, match %u, length %d\n",
1456 start, match, length);
1457 do {
1458 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1459 } while (--length != 0);
1460 z_error("invalid match");
1461 }
1462 if (z_verbose > 1) {
1463 fprintf(stderr,"\\[%d,%d]", start-match, length);
1464 do { putc(s->window[start++], stderr); } while (--length != 0);
1465 }
1466}
1467#else
1468# define check_match(s, start, match, length)
1469#endif /* ZLIB_DEBUG */
1470
1471/* ===========================================================================
1472 * Fill the window when the lookahead becomes insufficient.
1473 * Updates strstart and lookahead.
1474 *
1475 * IN assertion: lookahead < MIN_LOOKAHEAD
1476 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1477 * At least one byte has been read, or avail_in == 0; reads are
1478 * performed for at least two bytes (required for the zip translate_eol
1479 * option -- not supported here).
1480 */
1483{
1484 unsigned n;
1485 unsigned more; /* Amount of free space at the end of the window. */
1486 uInt wsize = s->w_size;
1487
1488 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1489
1490 do {
1491 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1492
1493 /* Deal with !@#$% 64K limit: */
1494 if (sizeof(int) <= 2) {
1495 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1496 more = wsize;
1497
1498 } else if (more == (unsigned)(-1)) {
1499 /* Very unlikely, but possible on 16 bit machine if
1500 * strstart == 0 && lookahead == 1 (input done a byte at time)
1501 */
1502 more--;
1503 }
1504 }
1505
1506 /* If the window is almost full and there is insufficient lookahead,
1507 * move the upper half to the lower one to make room in the upper half.
1508 */
1509 if (s->strstart >= wsize+MAX_DIST(s)) {
1510
1511 zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1512 s->match_start -= wsize;
1513 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1514 s->block_start -= (long) wsize;
1515 slide_hash(s);
1516 more += wsize;
1517 }
1518 if (s->strm->avail_in == 0) break;
1519
1520 /* If there was no sliding:
1521 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1522 * more == window_size - lookahead - strstart
1523 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1524 * => more >= window_size - 2*WSIZE + 2
1525 * In the BIG_MEM or MMAP case (not yet supported),
1526 * window_size == input_size + MIN_LOOKAHEAD &&
1527 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1528 * Otherwise, window_size == 2*WSIZE so more >= 2.
1529 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1530 */
1531 Assert(more >= 2, "more < 2");
1532
1533 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1534 s->lookahead += n;
1535
1536 /* Initialize the hash value now that we have some input: */
1537 if (s->lookahead + s->insert >= MIN_MATCH) {
1538 uInt str = s->strstart - s->insert;
1539 s->ins_h = s->window[str];
1540 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1541#if MIN_MATCH != 3
1542 Call UPDATE_HASH() MIN_MATCH-3 more times
1543#endif
1544 while (s->insert) {
1545 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1546#ifndef FASTEST
1547 s->prev[str & s->w_mask] = s->head[s->ins_h];
1548#endif
1549 s->head[s->ins_h] = (Pos)str;
1550 str++;
1551 s->insert--;
1552 if (s->lookahead + s->insert < MIN_MATCH)
1553 break;
1554 }
1555 }
1556 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1557 * but this is not important since only literal bytes will be emitted.
1558 */
1559
1560 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1561
1562 /* If the WIN_INIT bytes after the end of the current data have never been
1563 * written, then zero those bytes in order to avoid memory check reports of
1564 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1565 * the longest match routines. Update the high water mark for the next
1566 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1567 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1568 */
1569 if (s->high_water < s->window_size) {
1570 ulg curr = s->strstart + (ulg)(s->lookahead);
1571 ulg init;
1572
1573 if (s->high_water < curr) {
1574 /* Previous high water mark below current data -- zero WIN_INIT
1575 * bytes or up to end of window, whichever is less.
1576 */
1577 init = s->window_size - curr;
1578 if (init > WIN_INIT)
1579 init = WIN_INIT;
1580 zmemzero(s->window + curr, (unsigned)init);
1581 s->high_water = curr + init;
1582 }
1583 else if (s->high_water < (ulg)curr + WIN_INIT) {
1584 /* High water mark at or above current data, but below current data
1585 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1586 * to end of window, whichever is less.
1587 */
1588 init = (ulg)curr + WIN_INIT - s->high_water;
1589 if (init > s->window_size - s->high_water)
1590 init = s->window_size - s->high_water;
1591 zmemzero(s->window + s->high_water, (unsigned)init);
1592 s->high_water += init;
1593 }
1594 }
1595
1596 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1597 "not enough room for search");
1598}
1599
1600/* ===========================================================================
1601 * Flush the current block, with given end-of-file flag.
1602 * IN assertion: strstart is set to the end of the current match.
1603 */
1604#define FLUSH_BLOCK_ONLY(s, last) { \
1605 _tr_flush_block(s, (s->block_start >= 0L ? \
1606 (charf *)&s->window[(unsigned)s->block_start] : \
1607 (charf *)Z_NULL), \
1608 (ulg)((long)s->strstart - s->block_start), \
1609 (last)); \
1610 s->block_start = s->strstart; \
1611 flush_pending(s->strm); \
1612 Tracev((stderr,"[FLUSH]")); \
1613}
1614
1615/* Same but force premature exit if necessary. */
1616#define FLUSH_BLOCK(s, last) { \
1617 FLUSH_BLOCK_ONLY(s, last); \
1618 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1619}
1620
1621/* Maximum stored block length in deflate format (not including header). */
1622#define MAX_STORED 65535
1623
1624/* Minimum of a and b. */
1625#define MIN(a, b) ((a) > (b) ? (b) : (a))
1626
1627/* ===========================================================================
1628 * Copy without compression as much as possible from the input stream, return
1629 * the current block state.
1630 *
1631 * In case deflateParams() is used to later switch to a non-zero compression
1632 * level, s->matches (otherwise unused when storing) keeps track of the number
1633 * of hash table slides to perform. If s->matches is 1, then one hash table
1634 * slide will be done when switching. If s->matches is 2, the maximum value
1635 * allowed here, then the hash table will be cleared, since two or more slides
1636 * is the same as a clear.
1637 *
1638 * deflate_stored() is written to minimize the number of times an input byte is
1639 * copied. It is most efficient with large input and output buffers, which
1640 * maximizes the opportunites to have a single copy from next_in to next_out.
1641 */
1644 int flush;
1645{
1646 /* Smallest worthy block size when not flushing or finishing. By default
1647 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1648 * large input and output buffers, the stored block size will be larger.
1649 */
1650 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1651
1652 /* Copy as many min_block or larger stored blocks directly to next_out as
1653 * possible. If flushing, copy the remaining available input to next_out as
1654 * stored blocks, if there is enough space.
1655 */
1656 unsigned len, left, have, last = 0;
1657 unsigned used = s->strm->avail_in;
1658 do {
1659 /* Set len to the maximum size block that we can copy directly with the
1660 * available input data and output space. Set left to how much of that
1661 * would be copied from what's left in the window.
1662 */
1663 len = MAX_STORED; /* maximum deflate stored block length */
1664 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1665 if (s->strm->avail_out < have) /* need room for header */
1666 break;
1667 /* maximum stored block length that will fit in avail_out: */
1668 have = s->strm->avail_out - have;
1669 left = s->strstart - s->block_start; /* bytes left in window */
1670 if (len > (ulg)left + s->strm->avail_in)
1671 len = left + s->strm->avail_in; /* limit len to the input */
1672 if (len > have)
1673 len = have; /* limit len to the output */
1674
1675 /* If the stored block would be less than min_block in length, or if
1676 * unable to copy all of the available input when flushing, then try
1677 * copying to the window and the pending buffer instead. Also don't
1678 * write an empty block when flushing -- deflate() does that.
1679 */
1680 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1681 flush == Z_NO_FLUSH ||
1682 len != left + s->strm->avail_in))
1683 break;
1684
1685 /* Make a dummy stored block in pending to get the header bytes,
1686 * including any pending bits. This also updates the debugging counts.
1687 */
1688 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1689 _tr_stored_block(s, (char *)0, 0L, last);
1690
1691 /* Replace the lengths in the dummy stored block with len. */
1692 s->pending_buf[s->pending - 4] = len;
1693 s->pending_buf[s->pending - 3] = len >> 8;
1694 s->pending_buf[s->pending - 2] = ~len;
1695 s->pending_buf[s->pending - 1] = ~len >> 8;
1696
1697 /* Write the stored block header bytes. */
1698 flush_pending(s->strm);
1699
1700#ifdef ZLIB_DEBUG
1701 /* Update debugging counts for the data about to be copied. */
1702 s->compressed_len += len << 3;
1703 s->bits_sent += len << 3;
1704#endif
1705
1706 /* Copy uncompressed bytes from the window to next_out. */
1707 if (left) {
1708 if (left > len)
1709 left = len;
1710 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1711 s->strm->next_out += left;
1712 s->strm->avail_out -= left;
1713 s->strm->total_out += left;
1714 s->block_start += left;
1715 len -= left;
1716 }
1717
1718 /* Copy uncompressed bytes directly from next_in to next_out, updating
1719 * the check value.
1720 */
1721 if (len) {
1722 read_buf(s->strm, s->strm->next_out, len);
1723 s->strm->next_out += len;
1724 s->strm->avail_out -= len;
1725 s->strm->total_out += len;
1726 }
1727 } while (last == 0);
1728
1729 /* Update the sliding window with the last s->w_size bytes of the copied
1730 * data, or append all of the copied data to the existing window if less
1731 * than s->w_size bytes were copied. Also update the number of bytes to
1732 * insert in the hash tables, in the event that deflateParams() switches to
1733 * a non-zero compression level.
1734 */
1735 used -= s->strm->avail_in; /* number of input bytes directly copied */
1736 if (used) {
1737 /* If any input was used, then no unused input remains in the window,
1738 * therefore s->block_start == s->strstart.
1739 */
1740 if (used >= s->w_size) { /* supplant the previous history */
1741 s->matches = 2; /* clear hash */
1742 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1743 s->strstart = s->w_size;
1744 }
1745 else {
1746 if (s->window_size - s->strstart <= used) {
1747 /* Slide the window down. */
1748 s->strstart -= s->w_size;
1749 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1750 if (s->matches < 2)
1751 s->matches++; /* add a pending slide_hash() */
1752 }
1753 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1754 s->strstart += used;
1755 }
1756 s->block_start = s->strstart;
1757 s->insert += MIN(used, s->w_size - s->insert);
1758 }
1759 if (s->high_water < s->strstart)
1760 s->high_water = s->strstart;
1761
1762 /* If the last block was written to next_out, then done. */
1763 if (last)
1764 return finish_done;
1765
1766 /* If flushing and all input has been consumed, then done. */
1767 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1768 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1769 return block_done;
1770
1771 /* Fill the window with any remaining input. */
1772 have = s->window_size - s->strstart - 1;
1773 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1774 /* Slide the window down. */
1775 s->block_start -= s->w_size;
1776 s->strstart -= s->w_size;
1777 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1778 if (s->matches < 2)
1779 s->matches++; /* add a pending slide_hash() */
1780 have += s->w_size; /* more space now */
1781 }
1782 if (have > s->strm->avail_in)
1783 have = s->strm->avail_in;
1784 if (have) {
1785 read_buf(s->strm, s->window + s->strstart, have);
1786 s->strstart += have;
1787 }
1788 if (s->high_water < s->strstart)
1789 s->high_water = s->strstart;
1790
1791 /* There was not enough avail_out to write a complete worthy or flushed
1792 * stored block to next_out. Write a stored block to pending instead, if we
1793 * have enough input for a worthy block, or if flushing and there is enough
1794 * room for the remaining input as a stored block in the pending buffer.
1795 */
1796 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1797 /* maximum stored block length that will fit in pending: */
1798 have = MIN(s->pending_buf_size - have, MAX_STORED);
1799 min_block = MIN(have, s->w_size);
1800 left = s->strstart - s->block_start;
1801 if (left >= min_block ||
1802 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1803 s->strm->avail_in == 0 && left <= have)) {
1804 len = MIN(left, have);
1805 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1806 len == left ? 1 : 0;
1807 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1808 s->block_start += len;
1809 flush_pending(s->strm);
1810 }
1811
1812 /* We've done all we can with the available input and output. */
1813 return last ? finish_started : need_more;
1814}
1815
1816/* ===========================================================================
1817 * Compress as much as possible from the input stream, return the current
1818 * block state.
1819 * This function does not perform lazy evaluation of matches and inserts
1820 * new strings in the dictionary only for unmatched strings or for short
1821 * matches. It is used only for the fast compression options.
1822 */
1825 int flush;
1826{
1827 IPos hash_head; /* head of the hash chain */
1828 int bflush; /* set if current block must be flushed */
1829
1830 for (;;) {
1831 /* Make sure that we always have enough lookahead, except
1832 * at the end of the input file. We need MAX_MATCH bytes
1833 * for the next match, plus MIN_MATCH bytes to insert the
1834 * string following the next match.
1835 */
1836 if (s->lookahead < MIN_LOOKAHEAD) {
1837 fill_window(s);
1838 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1839 return need_more;
1840 }
1841 if (s->lookahead == 0) break; /* flush the current block */
1842 }
1843
1844 /* Insert the string window[strstart .. strstart+2] in the
1845 * dictionary, and set hash_head to the head of the hash chain:
1846 */
1847 hash_head = NIL;
1848 if (s->lookahead >= MIN_MATCH) {
1849 INSERT_STRING(s, s->strstart, hash_head);
1850 }
1851
1852 /* Find the longest match, discarding those <= prev_length.
1853 * At this point we have always match_length < MIN_MATCH
1854 */
1855 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1856 /* To simplify the code, we prevent matches with the string
1857 * of window index 0 (in particular we have to avoid a match
1858 * of the string with itself at the start of the input file).
1859 */
1860 s->match_length = longest_match (s, hash_head);
1861 /* longest_match() sets match_start */
1862 }
1863 if (s->match_length >= MIN_MATCH) {
1864 check_match(s, s->strstart, s->match_start, s->match_length);
1865
1866 _tr_tally_dist(s, s->strstart - s->match_start,
1867 s->match_length - MIN_MATCH, bflush);
1868
1869 s->lookahead -= s->match_length;
1870
1871 /* Insert new strings in the hash table only if the match length
1872 * is not too large. This saves time but degrades compression.
1873 */
1874#ifndef FASTEST
1875 if (s->match_length <= s->max_insert_length &&
1876 s->lookahead >= MIN_MATCH) {
1877 s->match_length--; /* string at strstart already in table */
1878 do {
1879 s->strstart++;
1880 INSERT_STRING(s, s->strstart, hash_head);
1881 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1882 * always MIN_MATCH bytes ahead.
1883 */
1884 } while (--s->match_length != 0);
1885 s->strstart++;
1886 } else
1887#endif
1888 {
1889 s->strstart += s->match_length;
1890 s->match_length = 0;
1891 s->ins_h = s->window[s->strstart];
1892 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1893#if MIN_MATCH != 3
1894 Call UPDATE_HASH() MIN_MATCH-3 more times
1895#endif
1896 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1897 * matter since it will be recomputed at next deflate call.
1898 */
1899 }
1900 } else {
1901 /* No match, output a literal byte */
1902 Tracevv((stderr,"%c", s->window[s->strstart]));
1903 _tr_tally_lit (s, s->window[s->strstart], bflush);
1904 s->lookahead--;
1905 s->strstart++;
1906 }
1907 if (bflush) FLUSH_BLOCK(s, 0);
1908 }
1909 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1910 if (flush == Z_FINISH) {
1911 FLUSH_BLOCK(s, 1);
1912 return finish_done;
1913 }
1914 if (s->last_lit)
1915 FLUSH_BLOCK(s, 0);
1916 return block_done;
1917}
1918
1919#ifndef FASTEST
1920/* ===========================================================================
1921 * Same as above, but achieves better compression. We use a lazy
1922 * evaluation for matches: a match is finally adopted only if there is
1923 * no better match at the next window position.
1924 */
1927 int flush;
1928{
1929 IPos hash_head; /* head of hash chain */
1930 int bflush; /* set if current block must be flushed */
1931
1932 /* Process the input block. */
1933 for (;;) {
1934 /* Make sure that we always have enough lookahead, except
1935 * at the end of the input file. We need MAX_MATCH bytes
1936 * for the next match, plus MIN_MATCH bytes to insert the
1937 * string following the next match.
1938 */
1939 if (s->lookahead < MIN_LOOKAHEAD) {
1940 fill_window(s);
1941 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1942 return need_more;
1943 }
1944 if (s->lookahead == 0) break; /* flush the current block */
1945 }
1946
1947 /* Insert the string window[strstart .. strstart+2] in the
1948 * dictionary, and set hash_head to the head of the hash chain:
1949 */
1950 hash_head = NIL;
1951 if (s->lookahead >= MIN_MATCH) {
1952 INSERT_STRING(s, s->strstart, hash_head);
1953 }
1954
1955 /* Find the longest match, discarding those <= prev_length.
1956 */
1957 s->prev_length = s->match_length, s->prev_match = s->match_start;
1958 s->match_length = MIN_MATCH-1;
1959
1960 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1961 s->strstart - hash_head <= MAX_DIST(s)) {
1962 /* To simplify the code, we prevent matches with the string
1963 * of window index 0 (in particular we have to avoid a match
1964 * of the string with itself at the start of the input file).
1965 */
1966 s->match_length = longest_match (s, hash_head);
1967 /* longest_match() sets match_start */
1968
1969 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1970#if TOO_FAR <= 32767
1971 || (s->match_length == MIN_MATCH &&
1972 s->strstart - s->match_start > TOO_FAR)
1973#endif
1974 )) {
1975
1976 /* If prev_match is also MIN_MATCH, match_start is garbage
1977 * but we will ignore the current match anyway.
1978 */
1979 s->match_length = MIN_MATCH-1;
1980 }
1981 }
1982 /* If there was a match at the previous step and the current
1983 * match is not better, output the previous match:
1984 */
1985 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1986 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1987 /* Do not insert strings in hash table beyond this. */
1988
1989 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1990
1991 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1992 s->prev_length - MIN_MATCH, bflush);
1993
1994 /* Insert in hash table all strings up to the end of the match.
1995 * strstart-1 and strstart are already inserted. If there is not
1996 * enough lookahead, the last two strings are not inserted in
1997 * the hash table.
1998 */
1999 s->lookahead -= s->prev_length-1;
2000 s->prev_length -= 2;
2001 do {
2002 if (++s->strstart <= max_insert) {
2003 INSERT_STRING(s, s->strstart, hash_head);
2004 }
2005 } while (--s->prev_length != 0);
2006 s->match_available = 0;
2007 s->match_length = MIN_MATCH-1;
2008 s->strstart++;
2009
2010 if (bflush) FLUSH_BLOCK(s, 0);
2011
2012 } else if (s->match_available) {
2013 /* If there was no match at the previous position, output a
2014 * single literal. If there was a match but the current match
2015 * is longer, truncate the previous match to a single literal.
2016 */
2017 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2018 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2019 if (bflush) {
2020 FLUSH_BLOCK_ONLY(s, 0);
2021 }
2022 s->strstart++;
2023 s->lookahead--;
2024 if (s->strm->avail_out == 0) return need_more;
2025 } else {
2026 /* There is no previous match to compare with, wait for
2027 * the next step to decide.
2028 */
2029 s->match_available = 1;
2030 s->strstart++;
2031 s->lookahead--;
2032 }
2033 }
2034 Assert (flush != Z_NO_FLUSH, "no flush?");
2035 if (s->match_available) {
2036 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2037 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2038 s->match_available = 0;
2039 }
2040 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2041 if (flush == Z_FINISH) {
2042 FLUSH_BLOCK(s, 1);
2043 return finish_done;
2044 }
2045 if (s->last_lit)
2046 FLUSH_BLOCK(s, 0);
2047 return block_done;
2048}
2049#endif /* FASTEST */
2050
2051/* ===========================================================================
2052 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2053 * one. Do not maintain a hash table. (It will be regenerated if this run of
2054 * deflate switches away from Z_RLE.)
2055 */
2058 int flush;
2059{
2060 int bflush; /* set if current block must be flushed */
2061 uInt prev; /* byte at distance one to match */
2062 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2063
2064 for (;;) {
2065 /* Make sure that we always have enough lookahead, except
2066 * at the end of the input file. We need MAX_MATCH bytes
2067 * for the longest run, plus one for the unrolled loop.
2068 */
2069 if (s->lookahead <= MAX_MATCH) {
2070 fill_window(s);
2071 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2072 return need_more;
2073 }
2074 if (s->lookahead == 0) break; /* flush the current block */
2075 }
2076
2077 /* See how many times the previous byte repeats */
2078 s->match_length = 0;
2079 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2080 scan = s->window + s->strstart - 1;
2081 prev = *scan;
2082 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2083 strend = s->window + s->strstart + MAX_MATCH;
2084 do {
2085 } while (prev == *++scan && prev == *++scan &&
2086 prev == *++scan && prev == *++scan &&
2087 prev == *++scan && prev == *++scan &&
2088 prev == *++scan && prev == *++scan &&
2089 scan < strend);
2090 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2091 if (s->match_length > s->lookahead)
2092 s->match_length = s->lookahead;
2093 }
2094 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2095 }
2096
2097 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2098 if (s->match_length >= MIN_MATCH) {
2099 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2100
2101 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2102
2103 s->lookahead -= s->match_length;
2104 s->strstart += s->match_length;
2105 s->match_length = 0;
2106 } else {
2107 /* No match, output a literal byte */
2108 Tracevv((stderr,"%c", s->window[s->strstart]));
2109 _tr_tally_lit (s, s->window[s->strstart], bflush);
2110 s->lookahead--;
2111 s->strstart++;
2112 }
2113 if (bflush) FLUSH_BLOCK(s, 0);
2114 }
2115 s->insert = 0;
2116 if (flush == Z_FINISH) {
2117 FLUSH_BLOCK(s, 1);
2118 return finish_done;
2119 }
2120 if (s->last_lit)
2121 FLUSH_BLOCK(s, 0);
2122 return block_done;
2123}
2124
2125/* ===========================================================================
2126 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2127 * (It will be regenerated if this run of deflate switches away from Huffman.)
2128 */
2131 int flush;
2132{
2133 int bflush; /* set if current block must be flushed */
2134
2135 for (;;) {
2136 /* Make sure that we have a literal to write. */
2137 if (s->lookahead == 0) {
2138 fill_window(s);
2139 if (s->lookahead == 0) {
2140 if (flush == Z_NO_FLUSH)
2141 return need_more;
2142 break; /* flush the current block */
2143 }
2144 }
2145
2146 /* Output a literal byte */
2147 s->match_length = 0;
2148 Tracevv((stderr,"%c", s->window[s->strstart]));
2149 _tr_tally_lit (s, s->window[s->strstart], bflush);
2150 s->lookahead--;
2151 s->strstart++;
2152 if (bflush) FLUSH_BLOCK(s, 0);
2153 }
2154 s->insert = 0;
2155 if (flush == Z_FINISH) {
2156 FLUSH_BLOCK(s, 1);
2157 return finish_done;
2158 }
2159 if (s->last_lit)
2160 FLUSH_BLOCK(s, 0);
2161 return block_done;
2162}
static constexpr double L
Definition: G4SIunits.hh:104
static constexpr double m
Definition: G4SIunits.hh:109
static constexpr double s
Definition: G4SIunits.hh:154
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len)
Definition: adler32.c:133
Definition: G4Pair.hh:151
unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf, uInt len)
Definition: crc32.c:236
const config configuration_table[10]
Definition: deflate.c:133
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head)
Definition: deflate.c:516
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version, int stream_size)
Definition: deflate.c:227
block_state
Definition: deflate.c:65
@ finish_started
Definition: deflate.c:68
@ block_done
Definition: deflate.c:67
@ need_more
Definition: deflate.c:66
@ finish_done
Definition: deflate.c:69
#define FLUSH_BLOCK_ONLY(s, last)
Definition: deflate.c:1604
#define HCRC_UPDATE(beg)
Definition: deflate.c:754
#define NIL
Definition: deflate.c:106
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits)
Definition: deflate.c:527
struct config_s config
block_state deflate_stored(deflate_state *s, int flush)
Definition: deflate.c:1642
#define MIN(a, b)
Definition: deflate.c:1625
#define check_match(s, start, match, length)
Definition: deflate.c:1468
void putShortMSB(deflate_state *s, uInt b)
Definition: deflate.c:715
#define UPDATE_HASH(s, h, c)
Definition: deflate.c:162
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source)
Definition: deflate.c:1101
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary, uInt dictLength)
Definition: deflate.c:375
void flush_pending(z_streamp strm)
Definition: deflate.c:729
int ZEXPORT deflateReset(z_streamp strm)
Definition: deflate.c:504
block_state compress_func OF((deflate_state *s, int flush))
Definition: deflate.c:72
#define INSERT_STRING(s, str, match_head)
Definition: deflate.c:181
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy)
Definition: deflate.c:567
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen)
Definition: deflate.c:651
unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size)
Definition: deflate.c:1163
const char deflate_copyright[]
Definition: deflate.c:53
block_state deflate_fast(deflate_state *s, int flush)
Definition: deflate.c:1823
block_state deflate_slow(deflate_state *s, int flush)
Definition: deflate.c:1925
#define FLUSH_BLOCK(s, last)
Definition: deflate.c:1616
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)
Definition: deflate.c:616
uInt longest_match(deflate_state *s, IPos cur_match)
Definition: deflate.c:1235
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value)
Definition: deflate.c:541
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary, uInt *dictLength)
Definition: deflate.c:444
#define TOO_FAR
Definition: deflate.c:110
block_state deflate_huff(deflate_state *s, int flush)
Definition: deflate.c:2129
int deflateStateCheck(z_streamp strm)
Definition: deflate.c:352
#define MAX_STORED
Definition: deflate.c:1622
int ZEXPORT deflateResetKeep(z_streamp strm)
Definition: deflate.c:466
int ZEXPORT deflateEnd(z_streamp strm)
Definition: deflate.c:1075
void fill_window(deflate_state *s)
Definition: deflate.c:1481
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)
Definition: deflate.c:239
#define RANK(f)
Definition: deflate.c:154
void lm_init(deflate_state *s)
Definition: deflate.c:1193
int ZEXPORT deflate(z_streamp strm, int flush)
Definition: deflate.c:762
void slide_hash(deflate_state *s)
Definition: deflate.c:200
#define CLEAR_HASH(s)
Definition: deflate.c:191
block_state deflate_rle(deflate_state *s, int flush)
Definition: deflate.c:2056
#define FINISH_STATE
Definition: deflate.h:62
#define COMMENT_STATE
Definition: deflate.h:59
#define HCRC_STATE
Definition: deflate.h:60
#define Buf_size
Definition: deflate.h:50
#define GZIP_STATE
Definition: deflate.h:55
#define MAX_DIST(s)
Definition: deflate.h:288
#define BUSY_STATE
Definition: deflate.h:61
#define put_byte(s, c)
Definition: deflate.h:280
#define _tr_tally_dist(s, distance, length, flush)
Definition: deflate.h:332
Pos FAR Posf
Definition: deflate.h:92
ush Pos
Definition: deflate.h:91
#define GZIP
Definition: deflate.h:22
#define INIT_STATE
Definition: deflate.h:53
#define MIN_LOOKAHEAD
Definition: deflate.h:283
#define WIN_INIT
Definition: deflate.h:293
#define NAME_STATE
Definition: deflate.h:58
unsigned IPos
Definition: deflate.h:93
#define _tr_tally_lit(s, c, flush)
Definition: deflate.h:325
#define EXTRA_STATE
Definition: deflate.h:57
#define local
Definition: gzguts.h:114
#define DEF_MEM_LEVEL
Definition: gzguts.h:151
void copy(G4double dst[], const G4double src[], size_t size=G4FieldTrack::ncompSVEC)
Definition: G4FieldUtils.cc:98
ush good_length
Definition: deflate.c:120
ush max_chain
Definition: deflate.c:123
compress_func func
Definition: deflate.c:124
ush nice_length
Definition: deflate.c:122
ush max_lazy
Definition: deflate.c:121
int nice_match
Definition: deflate.h:193
Bytef * pending_out
Definition: deflate.h:104
Bytef * window
Definition: deflate.h:118
Posf * prev
Definition: deflate.h:133
uInt strstart
Definition: deflate.h:161
z_streamp strm
Definition: deflate.h:100
Posf * head
Definition: deflate.h:139
Bytef * pending_buf
Definition: deflate.h:102
void ZLIB_INTERNAL _tr_init(deflate_state *s)
Definition: trees.c:378
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.c:862
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s)
Definition: trees.c:885
void ZLIB_INTERNAL _tr_align(deflate_state *s)
Definition: trees.c:895
#define Z_HUFFMAN_ONLY
Definition: zlib.h:197
#define Z_DEFLATED
Definition: zlib.h:209
gz_header FAR * gz_headerp
Definition: zlib.h:131
#define Z_BUF_ERROR
Definition: zlib.h:184
#define Z_UNKNOWN
Definition: zlib.h:206
#define ZLIB_VERSION
Definition: zlib.h:40
#define Z_DEFAULT_STRATEGY
Definition: zlib.h:200
z_stream FAR * z_streamp
Definition: zlib.h:108
#define Z_BLOCK
Definition: zlib.h:173
#define Z_VERSION_ERROR
Definition: zlib.h:185
#define Z_STREAM_END
Definition: zlib.h:178
#define Z_FINISH
Definition: zlib.h:172
#define Z_OK
Definition: zlib.h:177
#define Z_DATA_ERROR
Definition: zlib.h:182
#define Z_FIXED
Definition: zlib.h:199
#define Z_STREAM_ERROR
Definition: zlib.h:181
#define Z_NO_FLUSH
Definition: zlib.h:168
#define Z_NULL
Definition: zlib.h:212
#define Z_PARTIAL_FLUSH
Definition: zlib.h:169
#define Z_MEM_ERROR
Definition: zlib.h:183
#define Z_FULL_FLUSH
Definition: zlib.h:171
#define Z_FILTERED
Definition: zlib.h:196
#define Z_RLE
Definition: zlib.h:198
#define Z_DEFAULT_COMPRESSION
Definition: zlib.h:193
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
Definition: zutil.c:314
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size)
Definition: zutil.c:304
void ZLIB_INTERNAL zmemzero(Bytef *dest, uInt len)
Definition: zutil.c:172
void ZLIB_INTERNAL zmemcpy(Bytef *dest, const Bytef *source, uInt len)
Definition: zutil.c:148
int ZLIB_INTERNAL zmemcmp(Bytef *s1, const Bytef *s2, uInt len) const
Definition: zutil.c:159
#define ERR_RETURN(strm, err)
Definition: zutil.h:53
#define PRESET_DICT
Definition: zutil.h:80
unsigned short ush
Definition: zutil.h:44
#define ZALLOC(strm, items, size)
Definition: zutil.h:261
#define Assert(cond, msg)
Definition: zutil.h:247
#define ERR_MSG(err)
Definition: zutil.h:51
#define ZFREE(strm, addr)
Definition: zutil.h:263
#define MIN_MATCH
Definition: zutil.h:76
#define TRY_FREE(s, p)
Definition: zutil.h:264
#define OS_CODE
Definition: zutil.h:197
uch FAR uchf
Definition: zutil.h:43
#define MAX_MATCH
Definition: zutil.h:77
ush FAR ushf
Definition: zutil.h:45
unsigned long ulg
Definition: zutil.h:46
#define Tracevv(x)
Definition: zutil.h:250