Geant4-11
trees.c
Go to the documentation of this file.
1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2017 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7/*
8 * ALGORITHM
9 *
10 * The "deflation" process uses several Huffman trees. The more
11 * common source values are represented by shorter bit sequences.
12 *
13 * Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values). The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 * REFERENCES
20 *
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 * Storer, James A.
25 * Data Compression: Methods and Theory, pp. 49-50.
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27 *
28 * Sedgewick, R.
29 * Algorithms, p290.
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33
34/* #define GEN_TREES_H */
35
36#include "deflate.h"
37
38#ifdef ZLIB_DEBUG
39# include <ctype.h>
40#endif
41
42/* ===========================================================================
43 * Constants
44 */
45
46#define MAX_BL_BITS 7
47/* Bit length codes must not exceed MAX_BL_BITS bits */
48
49#define END_BLOCK 256
50/* end of block literal code */
51
52#define REP_3_6 16
53/* repeat previous bit length 3-6 times (2 bits of repeat count) */
54
55#define REPZ_3_10 17
56/* repeat a zero length 3-10 times (3 bits of repeat count) */
57
58#define REPZ_11_138 18
59/* repeat a zero length 11-138 times (7 bits of repeat count) */
60
61local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63
64local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66
67local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69
71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72/* The lengths of the bit length codes are sent in order of decreasing
73 * probability, to avoid transmitting the lengths for unused bit length codes.
74 */
75
76/* ===========================================================================
77 * Local data. These are initialized only once.
78 */
79
80#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
81
82#if defined(GEN_TREES_H) || !defined(STDC)
83/* non ANSI compilers may not accept trees.h */
84
86/* The static literal tree. Since the bit lengths are imposed, there is no
87 * need for the L_CODES extra codes used during heap construction. However
88 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
89 * below).
90 */
91
93/* The static distance tree. (Actually a trivial tree since all codes use
94 * 5 bits.)
95 */
96
98/* Distance codes. The first 256 values correspond to the distances
99 * 3 .. 258, the last 256 values correspond to the top 8 bits of
100 * the 15 bit distances.
101 */
102
104/* length code for each normalized match length (0 == MIN_MATCH) */
105
107/* First normalized length for each code (0 = MIN_MATCH) */
108
110/* First normalized distance for each code (0 = distance of 1) */
111
112#else
113# include "trees.h"
114#endif /* GEN_TREES_H */
115
117 const ct_data *static_tree; /* static tree or NULL */
118 const intf *extra_bits; /* extra bits for each code or NULL */
119 int extra_base; /* base index for extra_bits */
120 int elems; /* max number of elements in the tree */
121 int max_length; /* max bit length for the codes */
122};
123
126
129
131{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
132
133/* ===========================================================================
134 * Local (static) routines in this file.
135 */
136
139local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
141local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
143local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
144local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
146local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
147 int blcodes));
149 const ct_data *dtree));
151local unsigned bi_reverse OF((unsigned value, int length));
154
155#ifdef GEN_TREES_H
156local void gen_trees_header OF((void));
157#endif
158
159#ifndef ZLIB_DEBUG
160# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
161 /* Send a code of the given tree. c and tree must not have side effects */
162
163#else /* !ZLIB_DEBUG */
164# define send_code(s, c, tree) \
165 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
166 send_bits(s, tree[c].Code, tree[c].Len); }
167#endif
168
169/* ===========================================================================
170 * Output a short LSB first on the stream.
171 * IN assertion: there is enough room in pendingBuf.
172 */
173#define put_short(s, w) { \
174 put_byte(s, (uch)((w) & 0xff)); \
175 put_byte(s, (uch)((ush)(w) >> 8)); \
176}
177
178/* ===========================================================================
179 * Send a value on a given number of bits.
180 * IN assertion: length <= 16 and value fits in length bits.
181 */
182#ifdef ZLIB_DEBUG
183local void send_bits OF((deflate_state *s, int value, int length));
184
185local void send_bits(s, value, length)
187 int value; /* value to send */
188 int length; /* number of bits */
189{
190 Tracevv((stderr," l %2d v %4x ", length, value));
191 Assert(length > 0 && length <= 15, "invalid length");
192 s->bits_sent += (ulg)length;
193
194 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
195 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
196 * unused bits in value.
197 */
198 if (s->bi_valid > (int)Buf_size - length) {
199 s->bi_buf |= (ush)value << s->bi_valid;
200 put_short(s, s->bi_buf);
201 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
202 s->bi_valid += length - Buf_size;
203 } else {
204 s->bi_buf |= (ush)value << s->bi_valid;
205 s->bi_valid += length;
206 }
207}
208#else /* !ZLIB_DEBUG */
209
210#define send_bits(s, value, length) \
211{ int len = length;\
212 if (s->bi_valid > (int)Buf_size - len) {\
213 int val = (int)value;\
214 s->bi_buf |= (ush)val << s->bi_valid;\
215 put_short(s, s->bi_buf);\
216 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
217 s->bi_valid += len - Buf_size;\
218 } else {\
219 s->bi_buf |= (ush)(value) << s->bi_valid;\
220 s->bi_valid += len;\
221 }\
222}
223#endif /* ZLIB_DEBUG */
224
225
226/* the arguments must not have side effects */
227
228/* ===========================================================================
229 * Initialize the various 'constant' tables.
230 */
232{
233#if defined(GEN_TREES_H) || !defined(STDC)
234 static int static_init_done = 0;
235 int n; /* iterates over tree elements */
236 int bits; /* bit counter */
237 int length; /* length value */
238 int code; /* code value */
239 int dist; /* distance index */
240 ush bl_count[MAX_BITS+1];
241 /* number of codes at each bit length for an optimal tree */
242
243 if (static_init_done) return;
244
245 /* For some embedded targets, global variables are not initialized: */
246#ifdef NO_INIT_GLOBAL_POINTERS
252#endif
253
254 /* Initialize the mapping length (0..255) -> length code (0..28) */
255 length = 0;
256 for (code = 0; code < LENGTH_CODES-1; code++) {
257 base_length[code] = length;
258 for (n = 0; n < (1<<extra_lbits[code]); n++) {
259 _length_code[length++] = (uch)code;
260 }
261 }
262 Assert (length == 256, "tr_static_init: length != 256");
263 /* Note that the length 255 (match length 258) can be represented
264 * in two different ways: code 284 + 5 bits or code 285, so we
265 * overwrite length_code[255] to use the best encoding:
266 */
267 _length_code[length-1] = (uch)code;
268
269 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
270 dist = 0;
271 for (code = 0 ; code < 16; code++) {
272 base_dist[code] = dist;
273 for (n = 0; n < (1<<extra_dbits[code]); n++) {
274 _dist_code[dist++] = (uch)code;
275 }
276 }
277 Assert (dist == 256, "tr_static_init: dist != 256");
278 dist >>= 7; /* from now on, all distances are divided by 128 */
279 for ( ; code < D_CODES; code++) {
280 base_dist[code] = dist << 7;
281 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
282 _dist_code[256 + dist++] = (uch)code;
283 }
284 }
285 Assert (dist == 256, "tr_static_init: 256+dist != 512");
286
287 /* Construct the codes of the static literal tree */
288 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
289 n = 0;
290 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
291 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
292 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
293 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
294 /* Codes 286 and 287 do not exist, but we must include them in the
295 * tree construction to get a canonical Huffman tree (longest code
296 * all ones)
297 */
298 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
299
300 /* The static distance tree is trivial: */
301 for (n = 0; n < D_CODES; n++) {
302 static_dtree[n].Len = 5;
303 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
304 }
305 static_init_done = 1;
306
307# ifdef GEN_TREES_H
308 gen_trees_header();
309# endif
310#endif /* defined(GEN_TREES_H) || !defined(STDC) */
311}
312
313/* ===========================================================================
314 * Genererate the file trees.h describing the static trees.
315 */
316#ifdef GEN_TREES_H
317# ifndef ZLIB_DEBUG
318# include <stdio.h>
319# endif
320
321# define SEPARATOR(i, last, width) \
322 ((i) == (last)? "\n};\n\n" : \
323 ((i) % (width) == (width)-1 ? ",\n" : ", "))
324
325void gen_trees_header()
326{
327 FILE *header = fopen("trees.h", "w");
328 int i;
329
330 Assert (header != NULL, "Can't open trees.h");
331 fprintf(header,
332 "/* header created automatically with -DGEN_TREES_H */\n\n");
333
334 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
335 for (i = 0; i < L_CODES+2; i++) {
336 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
337 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
338 }
339
340 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
341 for (i = 0; i < D_CODES; i++) {
342 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
343 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
344 }
345
346 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
347 for (i = 0; i < DIST_CODE_LEN; i++) {
348 fprintf(header, "%2u%s", _dist_code[i],
349 SEPARATOR(i, DIST_CODE_LEN-1, 20));
350 }
351
352 fprintf(header,
353 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
354 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
355 fprintf(header, "%2u%s", _length_code[i],
356 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
357 }
358
359 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
360 for (i = 0; i < LENGTH_CODES; i++) {
361 fprintf(header, "%1u%s", base_length[i],
362 SEPARATOR(i, LENGTH_CODES-1, 20));
363 }
364
365 fprintf(header, "local const int base_dist[D_CODES] = {\n");
366 for (i = 0; i < D_CODES; i++) {
367 fprintf(header, "%5u%s", base_dist[i],
368 SEPARATOR(i, D_CODES-1, 10));
369 }
370
371 fclose(header);
372}
373#endif /* GEN_TREES_H */
374
375/* ===========================================================================
376 * Initialize the tree data structures for a new zlib stream.
377 */
380{
382
383 s->l_desc.dyn_tree = s->dyn_ltree;
384 s->l_desc.stat_desc = &static_l_desc;
385
386 s->d_desc.dyn_tree = s->dyn_dtree;
387 s->d_desc.stat_desc = &static_d_desc;
388
389 s->bl_desc.dyn_tree = s->bl_tree;
390 s->bl_desc.stat_desc = &static_bl_desc;
391
392 s->bi_buf = 0;
393 s->bi_valid = 0;
394#ifdef ZLIB_DEBUG
395 s->compressed_len = 0L;
396 s->bits_sent = 0L;
397#endif
398
399 /* Initialize the first block of the first file: */
400 init_block(s);
401}
402
403/* ===========================================================================
404 * Initialize a new block.
405 */
408{
409 int n; /* iterates over tree elements */
410
411 /* Initialize the trees. */
412 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
413 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
414 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
415
416 s->dyn_ltree[END_BLOCK].Freq = 1;
417 s->opt_len = s->static_len = 0L;
418 s->last_lit = s->matches = 0;
419}
420
421#define SMALLEST 1
422/* Index within the heap array of least frequent node in the Huffman tree */
423
424
425/* ===========================================================================
426 * Remove the smallest element from the heap and recreate the heap with
427 * one less element. Updates heap and heap_len.
428 */
429#define pqremove(s, tree, top) \
430{\
431 top = s->heap[SMALLEST]; \
432 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
433 pqdownheap(s, tree, SMALLEST); \
434}
435
436/* ===========================================================================
437 * Compares to subtrees, using the tree depth as tie breaker when
438 * the subtrees have equal frequency. This minimizes the worst case length.
439 */
440#define smaller(tree, n, m, depth) \
441 (tree[n].Freq < tree[m].Freq || \
442 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
443
444/* ===========================================================================
445 * Restore the heap property by moving down the tree starting at node k,
446 * exchanging a node with the smallest of its two sons if necessary, stopping
447 * when the heap property is re-established (each father smaller than its
448 * two sons).
449 */
450local void pqdownheap(s, tree, k)
452 ct_data *tree; /* the tree to restore */
453 int k; /* node to move down */
454{
455 int v = s->heap[k];
456 int j = k << 1; /* left son of k */
457 while (j <= s->heap_len) {
458 /* Set j to the smallest of the two sons: */
459 if (j < s->heap_len &&
460 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
461 j++;
462 }
463 /* Exit if v is smaller than both sons */
464 if (smaller(tree, v, s->heap[j], s->depth)) break;
465
466 /* Exchange v with the smallest son */
467 s->heap[k] = s->heap[j]; k = j;
468
469 /* And continue down the tree, setting j to the left son of k */
470 j <<= 1;
471 }
472 s->heap[k] = v;
473}
474
475/* ===========================================================================
476 * Compute the optimal bit lengths for a tree and update the total bit length
477 * for the current block.
478 * IN assertion: the fields freq and dad are set, heap[heap_max] and
479 * above are the tree nodes sorted by increasing frequency.
480 * OUT assertions: the field len is set to the optimal bit length, the
481 * array bl_count contains the frequencies for each bit length.
482 * The length opt_len is updated; static_len is also updated if stree is
483 * not null.
484 */
485local void gen_bitlen(s, desc)
487 tree_desc *desc; /* the tree descriptor */
488{
489 ct_data *tree = desc->dyn_tree;
490 int max_code = desc->max_code;
491 const ct_data *stree = desc->stat_desc->static_tree;
492 const intf *extra = desc->stat_desc->extra_bits;
493 int base = desc->stat_desc->extra_base;
494 int max_length = desc->stat_desc->max_length;
495 int h; /* heap index */
496 int n, m; /* iterate over the tree elements */
497 int bits; /* bit length */
498 int xbits; /* extra bits */
499 ush f; /* frequency */
500 int overflow = 0; /* number of elements with bit length too large */
501
502 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
503
504 /* In a first pass, compute the optimal bit lengths (which may
505 * overflow in the case of the bit length tree).
506 */
507 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
508
509 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
510 n = s->heap[h];
511 bits = tree[tree[n].Dad].Len + 1;
512 if (bits > max_length) bits = max_length, overflow++;
513 tree[n].Len = (ush)bits;
514 /* We overwrite tree[n].Dad which is no longer needed */
515
516 if (n > max_code) continue; /* not a leaf node */
517
518 s->bl_count[bits]++;
519 xbits = 0;
520 if (n >= base) xbits = extra[n-base];
521 f = tree[n].Freq;
522 s->opt_len += (ulg)f * (unsigned)(bits + xbits);
523 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
524 }
525 if (overflow == 0) return;
526
527 Tracev((stderr,"\nbit length overflow\n"));
528 /* This happens for example on obj2 and pic of the Calgary corpus */
529
530 /* Find the first bit length which could increase: */
531 do {
532 bits = max_length-1;
533 while (s->bl_count[bits] == 0) bits--;
534 s->bl_count[bits]--; /* move one leaf down the tree */
535 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
536 s->bl_count[max_length]--;
537 /* The brother of the overflow item also moves one step up,
538 * but this does not affect bl_count[max_length]
539 */
540 overflow -= 2;
541 } while (overflow > 0);
542
543 /* Now recompute all bit lengths, scanning in increasing frequency.
544 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
545 * lengths instead of fixing only the wrong ones. This idea is taken
546 * from 'ar' written by Haruhiko Okumura.)
547 */
548 for (bits = max_length; bits != 0; bits--) {
549 n = s->bl_count[bits];
550 while (n != 0) {
551 m = s->heap[--h];
552 if (m > max_code) continue;
553 if ((unsigned) tree[m].Len != (unsigned) bits) {
554 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
555 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
556 tree[m].Len = (ush)bits;
557 }
558 n--;
559 }
560 }
561}
562
563/* ===========================================================================
564 * Generate the codes for a given tree and bit counts (which need not be
565 * optimal).
566 * IN assertion: the array bl_count contains the bit length statistics for
567 * the given tree and the field len is set for all tree elements.
568 * OUT assertion: the field code is set for all tree elements of non
569 * zero code length.
570 */
571local void gen_codes (tree, max_code, bl_count)
572 ct_data *tree; /* the tree to decorate */
573 int max_code; /* largest code with non zero frequency */
574 ushf *bl_count; /* number of codes at each bit length */
575{
576 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
577 unsigned code = 0; /* running code value */
578 int bits; /* bit index */
579 int n; /* code index */
580
581 /* The distribution counts are first used to generate the code values
582 * without bit reversal.
583 */
584 for (bits = 1; bits <= MAX_BITS; bits++) {
585 code = (code + bl_count[bits-1]) << 1;
586 next_code[bits] = (ush)code;
587 }
588 /* Check that the bit counts in bl_count are consistent. The last code
589 * must be all ones.
590 */
591 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
592 "inconsistent bit counts");
593 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
594
595 for (n = 0; n <= max_code; n++) {
596 int len = tree[n].Len;
597 if (len == 0) continue;
598 /* Now reverse the bits */
599 tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
600
601 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
602 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
603 }
604}
605
606/* ===========================================================================
607 * Construct one Huffman tree and assigns the code bit strings and lengths.
608 * Update the total bit length for the current block.
609 * IN assertion: the field freq is set for all tree elements.
610 * OUT assertions: the fields len and code are set to the optimal bit length
611 * and corresponding code. The length opt_len is updated; static_len is
612 * also updated if stree is not null. The field max_code is set.
613 */
614local void build_tree(s, desc)
616 tree_desc *desc; /* the tree descriptor */
617{
618 ct_data *tree = desc->dyn_tree;
619 const ct_data *stree = desc->stat_desc->static_tree;
620 int elems = desc->stat_desc->elems;
621 int n, m; /* iterate over heap elements */
622 int max_code = -1; /* largest code with non zero frequency */
623 int node; /* new node being created */
624
625 /* Construct the initial heap, with least frequent element in
626 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
627 * heap[0] is not used.
628 */
629 s->heap_len = 0, s->heap_max = HEAP_SIZE;
630
631 for (n = 0; n < elems; n++) {
632 if (tree[n].Freq != 0) {
633 s->heap[++(s->heap_len)] = max_code = n;
634 s->depth[n] = 0;
635 } else {
636 tree[n].Len = 0;
637 }
638 }
639
640 /* The pkzip format requires that at least one distance code exists,
641 * and that at least one bit should be sent even if there is only one
642 * possible code. So to avoid special checks later on we force at least
643 * two codes of non zero frequency.
644 */
645 while (s->heap_len < 2) {
646 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
647 tree[node].Freq = 1;
648 s->depth[node] = 0;
649 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
650 /* node is 0 or 1 so it does not have extra bits */
651 }
652 desc->max_code = max_code;
653
654 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
655 * establish sub-heaps of increasing lengths:
656 */
657 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
658
659 /* Construct the Huffman tree by repeatedly combining the least two
660 * frequent nodes.
661 */
662 node = elems; /* next internal node of the tree */
663 do {
664 pqremove(s, tree, n); /* n = node of least frequency */
665 m = s->heap[SMALLEST]; /* m = node of next least frequency */
666
667 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
668 s->heap[--(s->heap_max)] = m;
669
670 /* Create a new node father of n and m */
671 tree[node].Freq = tree[n].Freq + tree[m].Freq;
672 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
673 s->depth[n] : s->depth[m]) + 1);
674 tree[n].Dad = tree[m].Dad = (ush)node;
675#ifdef DUMP_BL_TREE
676 if (tree == s->bl_tree) {
677 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
678 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
679 }
680#endif
681 /* and insert the new node in the heap */
682 s->heap[SMALLEST] = node++;
683 pqdownheap(s, tree, SMALLEST);
684
685 } while (s->heap_len >= 2);
686
687 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
688
689 /* At this point, the fields freq and dad are set. We can now
690 * generate the bit lengths.
691 */
692 gen_bitlen(s, (tree_desc *)desc);
693
694 /* The field len is now set, we can generate the bit codes */
695 gen_codes ((ct_data *)tree, max_code, s->bl_count);
696}
697
698/* ===========================================================================
699 * Scan a literal or distance tree to determine the frequencies of the codes
700 * in the bit length tree.
701 */
702local void scan_tree (s, tree, max_code)
704 ct_data *tree; /* the tree to be scanned */
705 int max_code; /* and its largest code of non zero frequency */
706{
707 int n; /* iterates over all tree elements */
708 int prevlen = -1; /* last emitted length */
709 int curlen; /* length of current code */
710 int nextlen = tree[0].Len; /* length of next code */
711 int count = 0; /* repeat count of the current code */
712 int max_count = 7; /* max repeat count */
713 int min_count = 4; /* min repeat count */
714
715 if (nextlen == 0) max_count = 138, min_count = 3;
716 tree[max_code+1].Len = (ush)0xffff; /* guard */
717
718 for (n = 0; n <= max_code; n++) {
719 curlen = nextlen; nextlen = tree[n+1].Len;
720 if (++count < max_count && curlen == nextlen) {
721 continue;
722 } else if (count < min_count) {
723 s->bl_tree[curlen].Freq += count;
724 } else if (curlen != 0) {
725 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
726 s->bl_tree[REP_3_6].Freq++;
727 } else if (count <= 10) {
728 s->bl_tree[REPZ_3_10].Freq++;
729 } else {
730 s->bl_tree[REPZ_11_138].Freq++;
731 }
732 count = 0; prevlen = curlen;
733 if (nextlen == 0) {
734 max_count = 138, min_count = 3;
735 } else if (curlen == nextlen) {
736 max_count = 6, min_count = 3;
737 } else {
738 max_count = 7, min_count = 4;
739 }
740 }
741}
742
743/* ===========================================================================
744 * Send a literal or distance tree in compressed form, using the codes in
745 * bl_tree.
746 */
747local void send_tree (s, tree, max_code)
749 ct_data *tree; /* the tree to be scanned */
750 int max_code; /* and its largest code of non zero frequency */
751{
752 int n; /* iterates over all tree elements */
753 int prevlen = -1; /* last emitted length */
754 int curlen; /* length of current code */
755 int nextlen = tree[0].Len; /* length of next code */
756 int count = 0; /* repeat count of the current code */
757 int max_count = 7; /* max repeat count */
758 int min_count = 4; /* min repeat count */
759
760 /* tree[max_code+1].Len = -1; */ /* guard already set */
761 if (nextlen == 0) max_count = 138, min_count = 3;
762
763 for (n = 0; n <= max_code; n++) {
764 curlen = nextlen; nextlen = tree[n+1].Len;
765 if (++count < max_count && curlen == nextlen) {
766 continue;
767 } else if (count < min_count) {
768 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
769
770 } else if (curlen != 0) {
771 if (curlen != prevlen) {
772 send_code(s, curlen, s->bl_tree); count--;
773 }
774 Assert(count >= 3 && count <= 6, " 3_6?");
775 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
776
777 } else if (count <= 10) {
778 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
779
780 } else {
781 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
782 }
783 count = 0; prevlen = curlen;
784 if (nextlen == 0) {
785 max_count = 138, min_count = 3;
786 } else if (curlen == nextlen) {
787 max_count = 6, min_count = 3;
788 } else {
789 max_count = 7, min_count = 4;
790 }
791 }
792}
793
794/* ===========================================================================
795 * Construct the Huffman tree for the bit lengths and return the index in
796 * bl_order of the last bit length code to send.
797 */
800{
801 int max_blindex; /* index of last bit length code of non zero freq */
802
803 /* Determine the bit length frequencies for literal and distance trees */
804 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
805 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
806
807 /* Build the bit length tree: */
808 build_tree(s, (tree_desc *)(&(s->bl_desc)));
809 /* opt_len now includes the length of the tree representations, except
810 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
811 */
812
813 /* Determine the number of bit length codes to send. The pkzip format
814 * requires that at least 4 bit length codes be sent. (appnote.txt says
815 * 3 but the actual value used is 4.)
816 */
817 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
818 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
819 }
820 /* Update opt_len to include the bit length tree and counts */
821 s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
822 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
823 s->opt_len, s->static_len));
824
825 return max_blindex;
826}
827
828/* ===========================================================================
829 * Send the header for a block using dynamic Huffman trees: the counts, the
830 * lengths of the bit length codes, the literal tree and the distance tree.
831 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
832 */
833local void send_all_trees(s, lcodes, dcodes, blcodes)
835 int lcodes, dcodes, blcodes; /* number of codes for each tree */
836{
837 int rank; /* index in bl_order */
838
839 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
840 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
841 "too many codes");
842 Tracev((stderr, "\nbl counts: "));
843 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
844 send_bits(s, dcodes-1, 5);
845 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
846 for (rank = 0; rank < blcodes; rank++) {
847 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
848 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
849 }
850 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
851
852 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
853 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
854
855 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
856 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
857}
858
859/* ===========================================================================
860 * Send a stored block
861 */
862void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
864 charf *buf; /* input block */
865 ulg stored_len; /* length of input block */
866 int last; /* one if this is the last block for a file */
867{
868 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
869 bi_windup(s); /* align on byte boundary */
870 put_short(s, (ush)stored_len);
871 put_short(s, (ush)~stored_len);
872 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
873 s->pending += stored_len;
874#ifdef ZLIB_DEBUG
875 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
876 s->compressed_len += (stored_len + 4) << 3;
877 s->bits_sent += 2*16;
878 s->bits_sent += stored_len<<3;
879#endif
880}
881
882/* ===========================================================================
883 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
884 */
887{
888 bi_flush(s);
889}
890
891/* ===========================================================================
892 * Send one empty static block to give enough lookahead for inflate.
893 * This takes 10 bits, of which 7 may remain in the bit buffer.
894 */
897{
898 send_bits(s, STATIC_TREES<<1, 3);
900#ifdef ZLIB_DEBUG
901 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
902#endif
903 bi_flush(s);
904}
905
906/* ===========================================================================
907 * Determine the best encoding for the current block: dynamic trees, static
908 * trees or store, and write out the encoded block.
909 */
910void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
912 charf *buf; /* input block, or NULL if too old */
913 ulg stored_len; /* length of input block */
914 int last; /* one if this is the last block for a file */
915{
916 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
917 int max_blindex = 0; /* index of last bit length code of non zero freq */
918
919 /* Build the Huffman trees unless a stored block is forced */
920 if (s->level > 0) {
921
922 /* Check if the file is binary or text */
923 if (s->strm->data_type == Z_UNKNOWN)
924 s->strm->data_type = detect_data_type(s);
925
926 /* Construct the literal and distance trees */
927 build_tree(s, (tree_desc *)(&(s->l_desc)));
928 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
929 s->static_len));
930
931 build_tree(s, (tree_desc *)(&(s->d_desc)));
932 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
933 s->static_len));
934 /* At this point, opt_len and static_len are the total bit lengths of
935 * the compressed block data, excluding the tree representations.
936 */
937
938 /* Build the bit length tree for the above two trees, and get the index
939 * in bl_order of the last bit length code to send.
940 */
941 max_blindex = build_bl_tree(s);
942
943 /* Determine the best encoding. Compute the block lengths in bytes. */
944 opt_lenb = (s->opt_len+3+7)>>3;
945 static_lenb = (s->static_len+3+7)>>3;
946
947 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
948 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
949 s->last_lit));
950
951 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
952
953 } else {
954 Assert(buf != (char*)0, "lost buf");
955 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
956 }
957
958#ifdef FORCE_STORED
959 if (buf != (char*)0) { /* force stored block */
960#else
961 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
962 /* 4: two words for the lengths */
963#endif
964 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
965 * Otherwise we can't have processed more than WSIZE input bytes since
966 * the last block flush, because compression would have been
967 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
968 * transform a block into a stored block.
969 */
970 _tr_stored_block(s, buf, stored_len, last);
971
972#ifdef FORCE_STATIC
973 } else if (static_lenb >= 0) { /* force static trees */
974#else
975 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
976#endif
977 send_bits(s, (STATIC_TREES<<1)+last, 3);
979 (const ct_data *)static_dtree);
980#ifdef ZLIB_DEBUG
981 s->compressed_len += 3 + s->static_len;
982#endif
983 } else {
984 send_bits(s, (DYN_TREES<<1)+last, 3);
985 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
986 max_blindex+1);
987 compress_block(s, (const ct_data *)s->dyn_ltree,
988 (const ct_data *)s->dyn_dtree);
989#ifdef ZLIB_DEBUG
990 s->compressed_len += 3 + s->opt_len;
991#endif
992 }
993 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
994 /* The above check is made mod 2^32, for files larger than 512 MB
995 * and uLong implemented on 32 bits.
996 */
997 init_block(s);
998
999 if (last) {
1000 bi_windup(s);
1001#ifdef ZLIB_DEBUG
1002 s->compressed_len += 7; /* align on byte boundary */
1003#endif
1004 }
1005 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1006 s->compressed_len-7*last));
1007}
1008
1009/* ===========================================================================
1010 * Save the match info and tally the frequency counts. Return true if
1011 * the current block must be flushed.
1012 */
1015 unsigned dist; /* distance of matched string */
1016 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1017{
1018 s->d_buf[s->last_lit] = (ush)dist;
1019 s->l_buf[s->last_lit++] = (uch)lc;
1020 if (dist == 0) {
1021 /* lc is the unmatched char */
1022 s->dyn_ltree[lc].Freq++;
1023 } else {
1024 s->matches++;
1025 /* Here, lc is the match length - MIN_MATCH */
1026 dist--; /* dist = match distance - 1 */
1027 Assert((ush)dist < (ush)MAX_DIST(s) &&
1028 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1029 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1030
1031 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1032 s->dyn_dtree[d_code(dist)].Freq++;
1033 }
1034
1035#ifdef TRUNCATE_BLOCK
1036 /* Try to guess if it is profitable to stop the current block here */
1037 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1038 /* Compute an upper bound for the compressed length */
1039 ulg out_length = (ulg)s->last_lit*8L;
1040 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1041 int dcode;
1042 for (dcode = 0; dcode < D_CODES; dcode++) {
1043 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1044 (5L+extra_dbits[dcode]);
1045 }
1046 out_length >>= 3;
1047 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1048 s->last_lit, in_length, out_length,
1049 100L - out_length*100L/in_length));
1050 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1051 }
1052#endif
1053 return (s->last_lit == s->lit_bufsize-1);
1054 /* We avoid equality with lit_bufsize because of wraparound at 64K
1055 * on 16 bit machines and because stored blocks are restricted to
1056 * 64K-1 bytes.
1057 */
1058}
1059
1060/* ===========================================================================
1061 * Send the block data compressed using the given Huffman trees
1062 */
1063local void compress_block(s, ltree, dtree)
1065 const ct_data *ltree; /* literal tree */
1066 const ct_data *dtree; /* distance tree */
1067{
1068 unsigned dist; /* distance of matched string */
1069 int lc; /* match length or unmatched char (if dist == 0) */
1070 unsigned lx = 0; /* running index in l_buf */
1071 unsigned code; /* the code to send */
1072 int extra; /* number of extra bits to send */
1073
1074 if (s->last_lit != 0) do {
1075 dist = s->d_buf[lx];
1076 lc = s->l_buf[lx++];
1077 if (dist == 0) {
1078 send_code(s, lc, ltree); /* send a literal byte */
1079 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1080 } else {
1081 /* Here, lc is the match length - MIN_MATCH */
1082 code = _length_code[lc];
1083 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1084 extra = extra_lbits[code];
1085 if (extra != 0) {
1086 lc -= base_length[code];
1087 send_bits(s, lc, extra); /* send the extra length bits */
1088 }
1089 dist--; /* dist is now the match distance - 1 */
1090 code = d_code(dist);
1091 Assert (code < D_CODES, "bad d_code");
1092
1093 send_code(s, code, dtree); /* send the distance code */
1094 extra = extra_dbits[code];
1095 if (extra != 0) {
1096 dist -= (unsigned)base_dist[code];
1097 send_bits(s, dist, extra); /* send the extra distance bits */
1098 }
1099 } /* literal or match pair ? */
1100
1101 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1102 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1103 "pendingBuf overflow");
1104
1105 } while (lx < s->last_lit);
1106
1107 send_code(s, END_BLOCK, ltree);
1108}
1109
1110/* ===========================================================================
1111 * Check if the data type is TEXT or BINARY, using the following algorithm:
1112 * - TEXT if the two conditions below are satisfied:
1113 * a) There are no non-portable control characters belonging to the
1114 * "black list" (0..6, 14..25, 28..31).
1115 * b) There is at least one printable character belonging to the
1116 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1117 * - BINARY otherwise.
1118 * - The following partially-portable control characters form a
1119 * "gray list" that is ignored in this detection algorithm:
1120 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1121 * IN assertion: the fields Freq of dyn_ltree are set.
1122 */
1125{
1126 /* black_mask is the bit mask of black-listed bytes
1127 * set bits 0..6, 14..25, and 28..31
1128 * 0xf3ffc07f = binary 11110011111111111100000001111111
1129 */
1130 unsigned long black_mask = 0xf3ffc07fUL;
1131 int n;
1132
1133 /* Check for non-textual ("black-listed") bytes. */
1134 for (n = 0; n <= 31; n++, black_mask >>= 1)
1135 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1136 return Z_BINARY;
1137
1138 /* Check for textual ("white-listed") bytes. */
1139 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1140 || s->dyn_ltree[13].Freq != 0)
1141 return Z_TEXT;
1142 for (n = 32; n < LITERALS; n++)
1143 if (s->dyn_ltree[n].Freq != 0)
1144 return Z_TEXT;
1145
1146 /* There are no "black-listed" or "white-listed" bytes:
1147 * this stream either is empty or has tolerated ("gray-listed") bytes only.
1148 */
1149 return Z_BINARY;
1150}
1151
1152/* ===========================================================================
1153 * Reverse the first len bits of a code, using straightforward code (a faster
1154 * method would use a table)
1155 * IN assertion: 1 <= len <= 15
1156 */
1157local unsigned bi_reverse(code, len)
1158 unsigned code; /* the value to invert */
1159 int len; /* its bit length */
1160{
1161 register unsigned res = 0;
1162 do {
1163 res |= code & 1;
1164 code >>= 1, res <<= 1;
1165 } while (--len > 0);
1166 return res >> 1;
1167}
1168
1169/* ===========================================================================
1170 * Flush the bit buffer, keeping at most 7 bits in it.
1171 */
1174{
1175 if (s->bi_valid == 16) {
1176 put_short(s, s->bi_buf);
1177 s->bi_buf = 0;
1178 s->bi_valid = 0;
1179 } else if (s->bi_valid >= 8) {
1180 put_byte(s, (Byte)s->bi_buf);
1181 s->bi_buf >>= 8;
1182 s->bi_valid -= 8;
1183 }
1184}
1185
1186/* ===========================================================================
1187 * Flush the bit buffer and align the output on a byte boundary
1188 */
1191{
1192 if (s->bi_valid > 8) {
1193 put_short(s, s->bi_buf);
1194 } else if (s->bi_valid > 0) {
1195 put_byte(s, (Byte)s->bi_buf);
1196 }
1197 s->bi_buf = 0;
1198 s->bi_valid = 0;
1199#ifdef ZLIB_DEBUG
1200 s->bits_sent = (s->bits_sent+7) & ~7;
1201#endif
1202}
static constexpr double L
Definition: G4SIunits.hh:104
static constexpr double m
Definition: G4SIunits.hh:109
static constexpr double s
Definition: G4SIunits.hh:154
#define Code
Definition: deflate.h:79
#define Buf_size
Definition: deflate.h:50
#define HEAP_SIZE
Definition: deflate.h:44
#define MAX_DIST(s)
Definition: deflate.h:288
#define L_CODES
Definition: deflate.h:35
#define LITERALS
Definition: deflate.h:32
#define Len
Definition: deflate.h:81
#define MAX_BITS
Definition: deflate.h:47
#define d_code(dist)
Definition: deflate.h:307
#define put_byte(s, c)
Definition: deflate.h:280
#define D_CODES
Definition: deflate.h:38
#define Freq
Definition: deflate.h:78
#define LENGTH_CODES
Definition: deflate.h:29
#define BL_CODES
Definition: deflate.h:41
#define local
Definition: gzguts.h:114
#define ZLIB_INTERNAL
Definition: gzguts.h:18
def lc(target="")
Definition: g4zmq.py:63
Definition: inftrees.h:24
const intf * extra_bits
Definition: trees.c:118
const ct_data * static_tree
Definition: trees.c:117
int max_code
Definition: deflate.h:87
ct_data * dyn_tree
Definition: deflate.h:86
const static_tree_desc * stat_desc
Definition: deflate.h:88
void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
Definition: trees.c:833
void build_tree(deflate_state *s, tree_desc *desc)
Definition: trees.c:614
const static_tree_desc static_d_desc
Definition: trees.c:127
void tr_static_init OF((void))
void tr_static_init()
Definition: trees.c:231
void init_block(deflate_state *s)
Definition: trees.c:406
void bi_flush(deflate_state *s)
Definition: trees.c:1172
#define END_BLOCK
Definition: trees.c:49
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
Definition: trees.c:1013
const int extra_blbits[BL_CODES]
Definition: trees.c:68
void ZLIB_INTERNAL _tr_init(deflate_state *s)
Definition: trees.c:378
#define REPZ_11_138
Definition: trees.c:58
#define DIST_CODE_LEN
Definition: trees.c:80
int detect_data_type(deflate_state *s)
Definition: trees.c:1123
#define REPZ_3_10
Definition: trees.c:55
int base_dist[D_CODES]
Definition: trees.c:109
const static_tree_desc static_bl_desc
Definition: trees.c:130
#define send_code(s, c, tree)
Definition: trees.c:160
ct_data static_dtree[D_CODES]
Definition: trees.c:92
unsigned bi_reverse(unsigned code, int len)
Definition: trees.c:1157
#define REP_3_6
Definition: trees.c:52
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.c:862
const int extra_lbits[LENGTH_CODES]
Definition: trees.c:62
const int extra_dbits[D_CODES]
Definition: trees.c:65
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s)
Definition: trees.c:885
void send_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.c:747
ct_data static_ltree[L_CODES+2]
Definition: trees.c:85
#define smaller(tree, n, m, depth)
Definition: trees.c:440
const uch bl_order[BL_CODES]
Definition: trees.c:71
#define MAX_BL_BITS
Definition: trees.c:46
int base_length[LENGTH_CODES]
Definition: trees.c:106
uch _length_code[MAX_MATCH-MIN_MATCH+1]
Definition: trees.c:103
void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree)
Definition: trees.c:1063
uch _dist_code[DIST_CODE_LEN]
Definition: trees.c:97
void bi_windup(deflate_state *s)
Definition: trees.c:1189
void scan_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.c:702
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.c:910
void ZLIB_INTERNAL _tr_align(deflate_state *s)
Definition: trees.c:895
#define pqremove(s, tree, top)
Definition: trees.c:429
void gen_codes(ct_data *tree, int max_code, ushf *bl_count)
Definition: trees.c:571
void gen_bitlen(deflate_state *s, tree_desc *desc)
Definition: trees.c:485
const static_tree_desc static_l_desc
Definition: trees.c:124
#define SMALLEST
Definition: trees.c:421
void pqdownheap(deflate_state *s, ct_data *tree, int k)
Definition: trees.c:450
#define put_short(s, w)
Definition: trees.c:173
#define send_bits(s, value, length)
Definition: trees.c:210
int build_bl_tree(deflate_state *s)
Definition: trees.c:798
#define Z_BINARY
Definition: zlib.h:203
#define Z_UNKNOWN
Definition: zlib.h:206
#define Z_FIXED
Definition: zlib.h:199
#define Z_TEXT
Definition: zlib.h:204
void ZLIB_INTERNAL zmemcpy(Bytef *dest, const Bytef *source, uInt len)
Definition: zutil.c:148
#define STATIC_TREES
Definition: zutil.h:72
unsigned short ush
Definition: zutil.h:44
#define DYN_TREES
Definition: zutil.h:73
#define Tracecv(c, x)
Definition: zutil.h:252
#define Assert(cond, msg)
Definition: zutil.h:247
#define Tracev(x)
Definition: zutil.h:249
#define MIN_MATCH
Definition: zutil.h:76
#define STORED_BLOCK
Definition: zutil.h:71
#define MAX_MATCH
Definition: zutil.h:77
ush FAR ushf
Definition: zutil.h:45
unsigned long ulg
Definition: zutil.h:46
#define Tracevv(x)
Definition: zutil.h:250
unsigned char uch
Definition: zutil.h:42