Geant4-11
G4PenelopeAnnihilationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Author: Luciano Pandola
28//
29// History:
30// --------
31// 29 Oct 2008 L Pandola Migration from process to model
32// 15 Apr 2009 V Ivanchenko Cleanup initialisation and generation of
33// secondaries:
34// - apply internal high-energy limit only in constructor
35// - do not apply low-energy limit (default is 0)
36// - do not use G4ElementSelector
37// 02 Oct 2013 L.Pandola Migration to MT
38
41#include "G4SystemOfUnits.hh"
45#include "G4DynamicParticle.hh"
46#include "G4Gamma.hh"
47
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49
51
53 const G4String& nam)
54 :G4VEmModel(nam),fParticleChange(nullptr),fParticle(nullptr),fIsInitialised(false)
55{
59
60 if (part)
61 SetParticle(part);
62
63 //Calculate variable that will be used later on
65
67 // Verbosity scale:
68 // 0 = nothing
69 // 1 = warning for energy non-conservation
70 // 2 = details of energy budget
71 // 3 = calculation of cross sections, file openings, sampling of atoms
72 // 4 = entering in methods
73}
74
75//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
76
78{;}
79
80//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
81
83 const G4DataVector&)
84{
85 if (fVerboseLevel > 3)
86 G4cout << "Calling G4PenelopeAnnihilationModel::Initialise()" << G4endl;
87 SetParticle(part);
88
89 if (IsMaster() && part == fParticle)
90 {
91
92 if(fVerboseLevel > 0) {
93 G4cout << "Penelope Annihilation model is initialized " << G4endl
94 << "Energy range: "
95 << LowEnergyLimit() / keV << " keV - "
96 << HighEnergyLimit() / GeV << " GeV"
97 << G4endl;
98 }
99 }
100
101 if(fIsInitialised) return;
103 fIsInitialised = true;
104}
105
106//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
108 G4VEmModel* masterModel)
109{
110 if (fVerboseLevel > 3)
111 G4cout << "Calling G4PenelopeAnnihilationModel::InitialiseLocal()" << G4endl;
112
113 //
114 //Check that particle matches: one might have multiple master models (e.g.
115 //for e+ and e-).
116 //
117 if (part == fParticle)
118 {
119 //Get the const table pointers from the master to the workers
120 const G4PenelopeAnnihilationModel* theModel =
121 static_cast<G4PenelopeAnnihilationModel*> (masterModel);
122
123 //Same verbosity for all workers, as the master
124 fVerboseLevel = theModel->fVerboseLevel;
125 }
126}
127
128//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
129
135{
136 if (fVerboseLevel > 3)
137 G4cout << "Calling ComputeCrossSectionPerAtom() of G4PenelopeAnnihilationModel" <<
138 G4endl;
139
141
142 if (fVerboseLevel > 2)
143 G4cout << "Annihilation cross Section at " << energy/keV << " keV for Z=" << Z <<
144 " = " << cs/barn << " barn" << G4endl;
145 return cs;
146}
147
148//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
149
150void G4PenelopeAnnihilationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
152 const G4DynamicParticle* aDynamicPositron,
153 G4double,
154 G4double)
155{
156 //
157 // Penelope model to sample final state for positron annihilation.
158 // Target eletrons are assumed to be free and at rest. Binding effects enabling
159 // one-photon annihilation are neglected.
160 // For annihilation at rest, two back-to-back photons are emitted, having energy of 511 keV
161 // and isotropic angular distribution.
162 // For annihilation in flight, it is used the theory from
163 // W. Heitler, The quantum theory of radiation, Oxford University Press (1954)
164 // The two photons can have different energy. The efficiency of the sampling algorithm
165 // of the photon energy from the dSigma/dE distribution is practically 100% for
166 // positrons of kinetic energy < 10 keV. It reaches a minimum (about 80%) at energy
167 // of about 10 MeV.
168 // The angle theta is kinematically linked to the photon energy, to ensure momentum
169 // conservation. The angle phi is sampled isotropically for the first gamma.
170 //
171 if (fVerboseLevel > 3)
172 G4cout << "Calling SamplingSecondaries() of G4PenelopeAnnihilationModel" << G4endl;
173
174 G4double kineticEnergy = aDynamicPositron->GetKineticEnergy();
175
176 // kill primary
179
180 if (kineticEnergy == 0.0)
181 {
182 //Old AtRestDoIt
183 G4double cosTheta = -1.0+2.0*G4UniformRand();
184 G4double sinTheta = std::sqrt(1.0-cosTheta*cosTheta);
186 G4ThreeVector direction (sinTheta*std::cos(phi),sinTheta*std::sin(phi),cosTheta);
188 direction, electron_mass_c2);
190 -direction, electron_mass_c2);
191
192 fvect->push_back(firstGamma);
193 fvect->push_back(secondGamma);
194 return;
195 }
196
197 //This is the "PostStep" case (annihilation in flight)
198 G4ParticleMomentum positronDirection =
199 aDynamicPositron->GetMomentumDirection();
200 G4double gamma = 1.0 + std::max(kineticEnergy,1.0*eV)/electron_mass_c2;
201 G4double gamma21 = std::sqrt(gamma*gamma-1);
202 G4double ani = 1.0+gamma;
203 G4double chimin = 1.0/(ani+gamma21);
204 G4double rchi = (1.0-chimin)/chimin;
205 G4double gt0 = ani*ani-2.0;
206 G4double test=0.0;
207 G4double epsilon = 0;
208 do{
209 epsilon = chimin*std::pow(rchi,G4UniformRand());
210 G4double reject = ani*ani*(1.0-epsilon)+2.0*gamma-(1.0/epsilon);
211 test = G4UniformRand()*gt0-reject;
212 }while(test>0);
213
214 G4double totalAvailableEnergy = kineticEnergy + 2.0*electron_mass_c2;
215 G4double photon1Energy = epsilon*totalAvailableEnergy;
216 G4double photon2Energy = (1.0-epsilon)*totalAvailableEnergy;
217 G4double cosTheta1 = (ani-1.0/epsilon)/gamma21;
218 G4double cosTheta2 = (ani-1.0/(1.0-epsilon))/gamma21;
219
220 G4double sinTheta1 = std::sqrt(1.-cosTheta1*cosTheta1);
221 G4double phi1 = twopi * G4UniformRand();
222 G4double dirx1 = sinTheta1 * std::cos(phi1);
223 G4double diry1 = sinTheta1 * std::sin(phi1);
224 G4double dirz1 = cosTheta1;
225
226 G4double sinTheta2 = std::sqrt(1.-cosTheta2*cosTheta2);
227 G4double phi2 = phi1+pi;
228 G4double dirx2 = sinTheta2 * std::cos(phi2);
229 G4double diry2 = sinTheta2 * std::sin(phi2);
230 G4double dirz2 = cosTheta2;
231
232 G4ThreeVector photon1Direction (dirx1,diry1,dirz1);
233 photon1Direction.rotateUz(positronDirection);
234 // create G4DynamicParticle object for the particle1
236 photon1Direction,
237 photon1Energy);
238 fvect->push_back(aParticle1);
239
240 G4ThreeVector photon2Direction(dirx2,diry2,dirz2);
241 photon2Direction.rotateUz(positronDirection);
242 // create G4DynamicParticle object for the particle2
244 photon2Direction,
245 photon2Energy);
246 fvect->push_back(aParticle2);
247
248 if (fVerboseLevel > 1)
249 {
250 G4cout << "-----------------------------------------------------------" << G4endl;
251 G4cout << "Energy balance from G4PenelopeAnnihilation" << G4endl;
252 G4cout << "Kinetic positron energy: " << kineticEnergy/keV << " keV" << G4endl;
253 G4cout << "Total available energy: " << totalAvailableEnergy/keV << " keV " << G4endl;
254 G4cout << "-----------------------------------------------------------" << G4endl;
255 G4cout << "Photon energy 1: " << photon1Energy/keV << " keV" << G4endl;
256 G4cout << "Photon energy 2: " << photon2Energy/keV << " keV" << G4endl;
257 G4cout << "Total final state: " << (photon1Energy+photon2Energy)/keV <<
258 " keV" << G4endl;
259 G4cout << "-----------------------------------------------------------" << G4endl;
260 }
261 if (fVerboseLevel > 0)
262 {
263 G4double energyDiff = std::fabs(totalAvailableEnergy-photon1Energy-photon2Energy);
264 if (energyDiff > 0.05*keV)
265 G4cout << "Warning from G4PenelopeAnnihilation: problem with energy conservation: " <<
266 (photon1Energy+photon2Energy)/keV <<
267 " keV (final) vs. " <<
268 totalAvailableEnergy/keV << " keV (initial)" << G4endl;
269 }
270 return;
271}
272
273//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
274
276{
277 //
278 // Penelope model to calculate cross section for positron annihilation.
279 // The annihilation cross section per electron is calculated according
280 // to the Heitler formula
281 // W. Heitler, The quantum theory of radiation, Oxford University Press (1954)
282 // in the assumptions of electrons free and at rest.
283 //
284 G4double gamma = 1.0+std::max(energy,1.0*eV)/electron_mass_c2;
285 G4double gamma2 = gamma*gamma;
286 G4double f2 = gamma2-1.0;
287 G4double f1 = std::sqrt(f2);
288 G4double crossSection = fPielr2*((gamma2+4.0*gamma+1.0)*G4Log(gamma+f1)/f2
289 - (gamma+3.0)/f1)/(gamma+1.0);
290 return crossSection;
291}
292
293//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...
294
296{
297 if(!fParticle) {
298 fParticle = p;
299 }
300}
G4double epsilon(G4double density, G4double temperature)
G4double G4Log(G4double x)
Definition: G4Log.hh:226
static constexpr double twopi
Definition: G4SIunits.hh:56
static constexpr double barn
Definition: G4SIunits.hh:85
static constexpr double keV
Definition: G4SIunits.hh:202
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double GeV
Definition: G4SIunits.hh:203
static constexpr double pi
Definition: G4SIunits.hh:55
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double ComputeCrossSectionPerElectron(G4double energy)
void SetParticle(const G4ParticleDefinition *)
void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *) override
G4PenelopeAnnihilationModel(const G4ParticleDefinition *p=nullptr, const G4String &processName="PenAnnih")
const G4ParticleDefinition * fParticle
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX) override
G4ParticleChangeForGamma * fParticleChange
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:767
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:123
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:662
G4bool IsMaster() const
Definition: G4VEmModel.hh:746
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:655
void ProposeTrackStatus(G4TrackStatus status)
G4double energy(const ThreeVector &p, const G4double m)
T max(const T t1, const T t2)
brief Return the largest of the two arguments
float electron_mass_c2
Definition: hepunit.py:273
int classic_electr_radius
Definition: hepunit.py:287
Definition: test.py:1