Geant4-11
G4ParticleHPJENDLHEData.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Class Description
27// Cross-section data set for a high precision (based on JENDL_HE evaluated data
28// libraries) description of elastic scattering 20 MeV ~ 3 GeV;
29// Class Description - End
30
31// 15-Nov-06 First Implementation is done by T. Koi (SLAC/SCCS)
32// P. Arce, June-2014 Conversion neutron_hp to particle_hp
33//
35#include "G4SystemOfUnits.hh"
37#include "G4ElementTable.hh"
38#include "G4ParticleHPData.hh"
39#include "G4Pow.hh"
40
42{
43
44 G4bool result = true;
45 G4double eKin = aP->GetKineticEnergy();
46 //if(eKin>20*MeV||aP->GetDefinition()!=G4Neutron::Neutron()) result = false;
47 if ( eKin < 20*MeV || 3*GeV < eKin || aP->GetDefinition()!=G4Neutron::Neutron() )
48 {
49 result = false;
50 }
51// Element Check
52 else if ( !(vElement[ anE->GetIndex() ]) ) result = false;
53
54 return result;
55
56}
57
58
59
61{
62 for ( std::map< G4int , std::map< G4int , G4PhysicsVector* >* >::iterator itZ = mIsotope.begin();
63 itZ != mIsotope.end(); ++itZ ) {
64 std::map< G4int , G4PhysicsVector* >* pointer_map = itZ->second;
65 if ( pointer_map ) {
66 for ( std::map< G4int , G4PhysicsVector* >::iterator itA = pointer_map->begin();
67 itA != pointer_map->end() ; ++itA ) {
68 G4PhysicsVector* pointerPhysicsVector = itA->second;
69 if ( pointerPhysicsVector ) {
70 delete pointerPhysicsVector;
71 itA->second = NULL;
72 }
73 }
74 delete pointer_map;
75 itZ->second = NULL;
76 }
77 }
78 mIsotope.clear();
79}
80
81
82
84:G4VCrossSectionDataSet( "JENDLHE"+reaction+"CrossSection" )
85{
86 reactionName = reaction;
87 BuildPhysicsTable( *pd );
88}
89
90
91
93{
94 ;
95 //delete theCrossSections;
96}
97
98
99
101{
102
103// if ( &aP != G4Neutron::Neutron() )
104// throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!");
106
107 G4String baseName = std::getenv( "G4NEUTRONHPDATA" );
108 G4String dirName = baseName+"/JENDL_HE/"+particleName+"/"+reactionName ;
109 G4String aFSType = "/CrossSection/";
110 G4ParticleHPNames theNames;
111
112 G4String filename;
113
114// Create JENDL_HE data
115// Create map element or isotope
116
117 size_t numberOfElements = G4Element::GetNumberOfElements();
118 //theCrossSections = new G4PhysicsTable( numberOfElements );
119
120 // make a PhysicsVector for each element
121
122 static G4ThreadLocal G4ElementTable *theElementTable = 0 ; if (!theElementTable) theElementTable= G4Element::GetElementTable();
123 vElement.clear();
124 vElement.resize( numberOfElements );
125 for ( size_t i = 0; i < numberOfElements; ++i )
126 {
127
128 G4Element* theElement = (*theElementTable)[i];
129 vElement[i] = false;
130
131 // isotope
132 G4int nIso = (*theElementTable)[i]->GetNumberOfIsotopes();
133 G4int Z = static_cast<G4int> ((*theElementTable)[i]->GetZ());
134 if ( nIso!=0 )
135 {
136 G4bool found_at_least_one = false;
137 for ( G4int i1 = 0; i1 < nIso; i1++ )
138 {
139 G4int A = theElement->GetIsotope(i1)->GetN();
140
141 if ( isThisNewIsotope( Z , A ) )
142 {
143
144 std::stringstream ss;
145 ss << dirName << aFSType << Z << "_" << A << "_" << theNames.GetName( Z-1 );
146 filename = ss.str();
147 std::fstream file;
148 file.open ( filename , std::fstream::in );
149 G4int dummy;
150 file >> dummy;
151 if ( file.good() )
152 {
153
154 //G4cout << "Found file for Z=" << Z << ", A=" << A << ", as " << filename << G4endl;
155 found_at_least_one = true;
156
157 // read the file
158 G4PhysicsVector* aPhysVec = readAFile ( &file );
159
160 //Regist
161
162 registAPhysicsVector( Z , A , aPhysVec );
163
164 }
165 else
166 {
167 //G4cout << "No file for "<< reactionType << " Z=" << Z << ", A=" << A << G4endl;
168 }
169
170 file.close();
171
172 }
173 else
174 {
175 found_at_least_one = TRUE;
176 }
177 }
178
179 if ( found_at_least_one ) vElement[i] = true;
180
181 }
182 else
183 {
184 G4StableIsotopes theStableOnes;
185 G4int first = theStableOnes.GetFirstIsotope( Z );
186 G4bool found_at_least_one = FALSE;
187 for ( G4int i1 = 0; i1 < theStableOnes.GetNumberOfIsotopes( static_cast<G4int>(theElement->GetZ() ) ); i1++)
188 {
189 G4int A = theStableOnes.GetIsotopeNucleonCount( first+i1 );
190
191 if ( isThisNewIsotope( Z , A ) )
192 {
193
194 std::stringstream ss;
195 ss << dirName << aFSType << Z << "_" << A << "_" << theNames.GetName( Z-1 );
196 filename = ss.str();
197
198 std::fstream file;
199 file.open ( filename , std::fstream::in );
200 G4int dummy;
201 file >> dummy;
202 if ( file.good() )
203 {
204 //G4cout << "Found file for Z=" << Z << ", A=" << A << ", as " << filename << G4endl;
205 found_at_least_one = TRUE;
206 //Read the file
207
208 G4PhysicsVector* aPhysVec = readAFile ( &file );
209
210 //Regist the PhysicsVector
211 registAPhysicsVector( Z , A , aPhysVec );
212
213 }
214 else
215 {
216 //G4cout << "No file for "<< reactionType << " Z=" << Z << ", A=" << A << G4endl;
217 }
218
219 file.close();
220 }
221 else
222 {
223 found_at_least_one = TRUE;
224 }
225 }
226
227 if ( found_at_least_one ) vElement[i] = true;
228
229 }
230
231 }
232
233}
234
235
236
238{
239 if(&aP!=G4Neutron::Neutron())
240 throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!");
241// G4cout << "G4ParticleHPJENDLHEData::DumpPhysicsTable still to be implemented"<<G4endl;
242}
243
244
245
248// aTemp
249{
250
251 // Primary energy >20MeV
252 // Thus
253 // Not take account of Doppler broadening
254 // also
255 // Not take account of Target thermal motions
256
257 G4double result = 0;
258
259 G4double ek = aP->GetKineticEnergy();
260
261 G4int nIso = anE->GetNumberOfIsotopes();
262 G4int Z = static_cast<G4int> ( anE->GetZ() );
263 if ( nIso!=0 )
264 {
265 for ( G4int i1 = 0; i1 < nIso; i1++ )
266 {
267
268 G4int A = anE->GetIsotope(i1)->GetN();
269 G4double frac = anE->GetRelativeAbundanceVector()[ i1 ]; // This case do NOT request "*perCent".
270
271 result += frac * getXSfromThisIsotope( Z , A , ek );
272 //G4cout << reactionType << " XS in barn " << Z << " " << A << " " << frac << " " << getXSfromThisIsotope( Z , A , ek )/barn << G4endl;
273
274 }
275 }
276 else
277 {
278
279 G4StableIsotopes theStableOnes;
280 G4int first = theStableOnes.GetFirstIsotope( Z );
281 for ( G4int i1 = 0; i1 < theStableOnes.GetNumberOfIsotopes( static_cast<G4int>(anE->GetZ() ) ); i1++)
282 {
283
284 G4int A = theStableOnes.GetIsotopeNucleonCount( first+i1 );
285 G4double frac = theStableOnes.GetAbundance( first+i1 )*perCent; // This case request "*perCent".
286
287 result += frac * getXSfromThisIsotope( Z , A , ek );
288 //G4cout << reactionType << " XS in barn " << Z << " " << A << " " << frac << " " << getXSfromThisIsotope( Z , A , ek )/barn << G4endl;
289
290 }
291 }
292 return result;
293
294}
295
296
297
299{
300
301 G4int dummy;
302 G4int len;
303 *file >> dummy;
304 *file >> len;
305
306 std::vector< G4double > v_e;
307 std::vector< G4double > v_xs;
308
309 for ( G4int i = 0 ; i < len ; i++ )
310 {
311 G4double e;
312 G4double xs;
313
314 *file >> e;
315 *file >> xs;
316 // data are written in eV and barn.
317 v_e.push_back( e*eV );
318 v_xs.push_back( xs*barn );
319 }
320
321 G4PhysicsFreeVector* aPhysVec = new G4PhysicsFreeVector( static_cast< size_t >( len ) , v_e.front() , v_e.back() );
322
323 for ( G4int i = 0 ; i < len ; i++ )
324 {
325 aPhysVec->PutValues( static_cast< size_t >( i ) , v_e[ i ] , v_xs[ i ] );
326 }
327
328 return aPhysVec;
329}
330
331
332
334{
335 if ( mIsotope.find ( z ) == mIsotope.end() ) return false;
336 if ( mIsotope.find ( z ) -> second->find ( a ) == mIsotope.find ( z ) -> second->end() ) return false;
337 return true;
338}
339
340
341
343{
344
345 std::pair< G4int , G4PhysicsVector* > aPair = std::pair < G4int , G4PhysicsVector* > ( A , aPhysVec );
346
347 std::map < G4int , std::map< G4int , G4PhysicsVector* >* >::iterator itm;
348 itm = mIsotope.find ( Z );
349 if ( itm != mIsotope.end() )
350 {
351 itm->second->insert ( aPair );
352 }
353 else
354 {
355 std::map< G4int , G4PhysicsVector* >* aMap = new std::map< G4int , G4PhysicsVector* >;
356 aMap->insert ( aPair );
357 mIsotope.insert( std::pair< G4int , std::map< G4int , G4PhysicsVector* >* > ( Z , aMap ) );
358 }
359
360}
361
362
363
365{
366
367 G4double aXSection = 0.0;
368 G4bool outOfRange;
369
370 G4PhysicsVector* aPhysVec;
371 if ( mIsotope.find ( Z )->second->find ( A ) != mIsotope.find ( Z )->second->end() )
372 {
373
374 aPhysVec = mIsotope.find ( Z )->second->find ( A )->second;
375 aXSection = aPhysVec->GetValue( ek , outOfRange );
376
377 }
378 else
379 {
380
381 //Select closest one in the same Z
382 std::map < G4int , G4PhysicsVector* >::iterator it;
383 G4int delta0 = 99; // no mean for 99
384 for ( it = mIsotope.find ( Z )->second->begin() ; it != mIsotope.find ( Z )->second->end() ; it++ )
385 {
386 G4int delta = std::abs( A - it->first );
387 if ( delta < delta0 ) delta0 = delta;
388 }
389
390 // Randomize of selection larger or smaller than A
391 if ( G4UniformRand() < 0.5 ) delta0 *= -1;
392 G4int A1 = A + delta0;
393 if ( mIsotope.find ( Z )->second->find ( A1 ) != mIsotope.find ( Z )->second->end() )
394 {
395 aPhysVec = mIsotope.find ( Z )->second->find ( A1 )->second;
396 }
397 else
398 {
399 A1 = A - delta0;
400 aPhysVec = mIsotope.find ( Z )->second->find ( A1 )->second;
401 }
402
403 aXSection = aPhysVec->GetValue( ek , outOfRange );
404 // X^(2/3) factor
405 //aXSection *= std::pow ( 1.0*A/ A1 , 2.0 / 3.0 );
406 aXSection *= G4Pow::GetInstance()->A23( 1.0*A/ A1 );
407
408 }
409
410 return aXSection;
411}
std::vector< G4Element * > G4ElementTable
static constexpr double perCent
Definition: G4SIunits.hh:325
static constexpr double barn
Definition: G4SIunits.hh:85
static constexpr double second
Definition: G4SIunits.hh:137
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double MeV
Definition: G4SIunits.hh:200
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define TRUE
Definition: Globals.hh:27
#define FALSE
Definition: Globals.hh:23
#define G4UniformRand()
Definition: Randomize.hh:52
G4double GetKineticEnergy() const
static G4ElementTable * GetElementTable()
Definition: G4Element.cc:397
G4double * GetRelativeAbundanceVector() const
Definition: G4Element.hh:167
G4double GetZ() const
Definition: G4Element.hh:131
static size_t GetNumberOfElements()
Definition: G4Element.cc:404
const G4Isotope * GetIsotope(G4int iso) const
Definition: G4Element.hh:170
size_t GetIndex() const
Definition: G4Element.hh:182
size_t GetNumberOfIsotopes() const
Definition: G4Element.hh:159
G4int GetN() const
Definition: G4Isotope.hh:93
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
const G4String & GetParticleName() const
G4bool isThisNewIsotope(G4int z, G4int a)
G4double GetCrossSection(const G4DynamicParticle *, const G4Element *, G4double aT)
void registAPhysicsVector(G4int, G4int, G4PhysicsVector *)
G4bool isThisInMap(G4int, G4int)
G4bool IsApplicable(const G4DynamicParticle *, const G4Element *)
void BuildPhysicsTable(const G4ParticleDefinition &)
std::vector< G4bool > vElement
std::map< G4int, std::map< G4int, G4PhysicsVector * > * > mIsotope
G4double getXSfromThisIsotope(G4int, G4int, G4double)
void DumpPhysicsTable(const G4ParticleDefinition &)
G4PhysicsVector * readAFile(std::fstream *)
G4ParticleHPDataUsed GetName(G4int A, G4int Z, G4String base, G4String rest, G4bool &active)
void PutValues(const std::size_t index, const G4double energy, const G4double value)
G4double GetValue(const G4double energy, G4bool &isOutRange) const
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double A23(G4double A) const
Definition: G4Pow.hh:131
G4double GetAbundance(G4int number)
G4int GetFirstIsotope(G4int Z)
G4int GetNumberOfIsotopes(G4int Z)
G4int GetIsotopeNucleonCount(G4int number)
#define G4ThreadLocal
Definition: tls.hh:77