Geant4-11
G4PairProductionRelModel.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class header file
30//
31//
32// File name: G4PairProductionRelModel
33//
34// Author: Andreas Schaelicke
35//
36// Creation date: 02.04.2009
37//
38// Modifications:
39// 28-05-18 New version with improved screening function approximation, improved
40// LPM function approximation, efficiency, documentation and cleanup.
41// Corrected call to selecting target atom in the final state sampling.
42// (M. Novak)
43//
44// Class Description:
45//
46// Implementation of gamma conversion to e+e- in the field of a nucleus
47// relativistic approximation
48//
49
50// -------------------------------------------------------------------
51//
52
53#ifndef G4PairProductionRelModel_h
54#define G4PairProductionRelModel_h 1
55
57
58#include "G4VEmModel.hh"
59#include "G4Log.hh"
60#include "G4Exp.hh"
61#include "G4Pow.hh"
62
63#include <vector>
64
66
68{
69
70public:
71
72 explicit G4PairProductionRelModel(const G4ParticleDefinition* p = nullptr,
73 const G4String& nam = "BetheHeitlerLPM");
74
76
77 void Initialise(const G4ParticleDefinition*, const G4DataVector&) override;
78
80 G4VEmModel* masterModel) override;
81
83 G4double kinEnergy,
84 G4double Z,
85 G4double A=0.,
86 G4double cut=0.,
87 G4double emax=DBL_MAX) override;
88
89 void SampleSecondaries(std::vector<G4DynamicParticle*>*,
91 const G4DynamicParticle*,
92 G4double tmin,
93 G4double maxEnergy) override;
94
96 const G4Material*,G4double) override;
97
98 inline void SetLPMflag(G4bool val) { fIsUseLPMCorrection = val; }
99 inline G4bool LPMflag() const { return fIsUseLPMCorrection; }
100
102 (const G4PairProductionRelModel &right) = delete;
104
105protected:
106
107 // for evaluating screening related functions
108 inline void ComputePhi12(const G4double delta,
109 G4double &phi1, G4double &phi2);
110 inline G4double ScreenFunction1(const G4double delta);
111 inline G4double ScreenFunction2(const G4double delta);
112 inline void ScreenFunction12(const G4double delta,
113 G4double &f1, G4double &f2);
114 // helper methods for cross-section computation under different approximations
117 G4double ComputeDXSectionPerAtom(G4double eplusEnergy, G4double gammaEnergy,
118 G4double Z);
120 G4double gammaEnergy, G4double Z);
121
122private:
123
124 // for creating some data structure per Z
126 struct ElementData {
136 };
137 // for precomputing comp. intensive parts of LPM suppression functions and
138 // using them at run-time
139 void InitLPMFunctions();
140 void ComputeLPMGsPhis(G4double &funcGS, G4double &funcPhiS,
141 const G4double varShat);
142 void GetLPMFunctions(G4double &lpmGs, G4double &lpmPhis, const G4double sval);
143 void ComputeLPMfunctions(G4double &fXiS, G4double &fGS, G4double &fPhiS,
144 const G4double eps, const G4double egamma,
145 const G4int izet);
146 struct LPMFuncs {
147 LPMFuncs() : fIsInitialized(false), fISDelta(100.), fSLimit(2.) {}
151 std::vector<G4double> fLPMFuncG;
152 std::vector<G4double> fLPMFuncPhi;
153 };
154
155protected:
156 static const G4int gMaxZet;
157 //
158 static const G4double gLPMconstant;
159 //
160 static const G4double gXGL[8];
161 static const G4double gWGL[8];
162 static const G4double gFelLowZet[8];
163 static const G4double gFinelLowZet[8];
164 //
165 static const G4double gXSecFactor;
167 //
168 static std::vector<ElementData*> gElementData;
170 //
173 //
175 //
178 //
184};
185//
186// Bethe screening functions for the elastic (coherent) scattering:
187// Bethe's phi1, phi2 coherent screening functions were computed numerically
188// by using (the universal) atomic form factors computed based on the Thomas-
189// Fermi model of the atom (using numerical solution of the Thomas-Fermi
190// screening function instead of Moliere's analytical approximation). The
191// numerical results can be well approximated (better than Butcher & Messel
192// especially near the delta=1 limit) by:
193// ## if delta <= 1.4
194// phi1(delta) = 20.806 - delta*(3.190 - 0.5710*delta)
195// phi2(delta) = 20.234 - delta*(2.126 - 0.0903*delta)
196// ## if delta > 1.4
197// phi1(delta) = phi2(delta) = 21.0190 - 4.145*ln(delta + 0.958)
198// with delta = 136mc^2kZ^{-1/3}/[E(Eg-E)] = 136Z^{-1/3}eps0/[eps(1-eps)] where
199// Eg is the initial photon energy, E is the total energy transferred to one of
200// the e-/e+ pair, eps0 = mc^2/Eg and eps = E/Eg.
201
203 G4double &phi1,
204 G4double &phi2)
205{
206 if (delta > 1.4) {
207 phi1 = 21.0190 - 4.145*G4Log(delta + 0.958);
208 phi2 = phi1;
209 } else {
210 phi1 = 20.806 - delta*(3.190 - 0.5710*delta);
211 phi2 = 20.234 - delta*(2.126 - 0.0903*delta);
212 }
213}
214
215// Compute the value of the screening function 3*PHI1(delta) - PHI2(delta):
217{
218 return (delta > 1.4) ? 42.038 - 8.29*G4Log(delta + 0.958)
219 : 42.184 - delta*(7.444 - 1.623*delta);
220}
221
222// Compute the value of the screening function 1.5*PHI1(delta) +0.5*PHI2(delta):
224{
225 return (delta > 1.4) ? 42.038 - 8.29*G4Log(delta + 0.958)
226 : 41.326 - delta*(5.848 - 0.902*delta);
227}
228
229// Same as ScreenFunction1 and ScreenFunction2 but computes them at once
231 G4double &f1, G4double &f2)
232{
233 if (delta > 1.4) {
234 f1 = 42.038 - 8.29*G4Log(delta + 0.958);
235 f2 = f1;
236 } else {
237 f1 = 42.184 - delta*(7.444 - 1.623*delta);
238 f2 = 41.326 - delta*(5.848 - 0.902*delta);
239 }
240}
241
242#endif
static const G4double emax
static const G4double eps
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
G4double ComputeRelDXSectionPerAtom(G4double eplusEnergy, G4double gammaEnergy, G4double Z)
static const G4double gFelLowZet[8]
void ComputeLPMGsPhis(G4double &funcGS, G4double &funcPhiS, const G4double varShat)
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double ComputeParametrizedXSectionPerAtom(G4double gammaEnergy, G4double Z)
static const G4double gEgLPMActivation
void ComputeLPMfunctions(G4double &fXiS, G4double &fGS, G4double &fPhiS, const G4double eps, const G4double egamma, const G4int izet)
void ScreenFunction12(const G4double delta, G4double &f1, G4double &f2)
static const G4double gFinelLowZet[8]
static std::vector< ElementData * > gElementData
G4PairProductionRelModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="BetheHeitlerLPM")
static const G4double gXGL[8]
G4double ScreenFunction1(const G4double delta)
void SetupForMaterial(const G4ParticleDefinition *, const G4Material *, G4double) override
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cut=0., G4double emax=DBL_MAX) override
G4ParticleDefinition * fThePositron
static const G4double gLPMconstant
void ComputePhi12(const G4double delta, G4double &phi1, G4double &phi2)
void GetLPMFunctions(G4double &lpmGs, G4double &lpmPhis, const G4double sval)
G4double ComputeXSectionPerAtom(G4double gammaEnergy, G4double Z)
G4PairProductionRelModel(const G4PairProductionRelModel &)=delete
G4double ScreenFunction2(const G4double delta)
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4ParticleDefinition * fTheGamma
G4double ComputeDXSectionPerAtom(G4double eplusEnergy, G4double gammaEnergy, G4double Z)
void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
static const G4double gWGL[8]
G4ParticleChangeForGamma * fParticleChange
G4ParticleDefinition * fTheElectron
Definition: G4Pow.hh:49
#define DBL_MAX
Definition: templates.hh:62