Geant4-11
G4NuclearAbrasionGeometry.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * *
21// * Parts of this code which have been developed by QinetiQ Ltd *
22// * under contract to the European Space Agency (ESA) are the *
23// * intellectual property of ESA. Rights to use, copy, modify and *
24// * redistribute this software for general public use are granted *
25// * in compliance with any licensing, distribution and development *
26// * policy adopted by the Geant4 Collaboration. This code has been *
27// * written by QinetiQ Ltd for the European Space Agency, under ESA *
28// * contract 17191/03/NL/LvH (Aurora Programme). *
29// * *
30// * By using, copying, modifying or distributing the software (or *
31// * any work based on the software) you agree to acknowledge its *
32// * use in resulting scientific publications, and indicate your *
33// * acceptance of all terms of the Geant4 Software license. *
34// ********************************************************************
35//
36// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37//
38// MODULE: G4NuclearAbrasionGeometry.cc
39//
40// Version: B.1
41// Date: 15/04/04
42// Author: P R Truscott
43// Organisation: QinetiQ Ltd, UK
44// Customer: ESA/ESTEC, NOORDWIJK
45// Contract: 17191/03/NL/LvH
46//
47// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48//
49// CHANGE HISTORY
50// --------------
51//
52// 18 November 2003, P R Truscott, QinetiQ Ltd, UK
53// Created.
54//
55// 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56// Beta release
57//
58// 4 June 2004, J.P. Wellisch, CERN, Switzerland
59// resolving technical portability issues.
60//
61// 12 June 2012, A. Ribon, CERN, Switzerland
62// Fixing trivial warning errors of shadowed variables.
63//
64// 4 August 2015, A. Ribon, CERN, Switzerland
65// Replacing std::pow with the faster G4Pow.
66//
67// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69//
71#include "G4WilsonRadius.hh"
73#include "G4SystemOfUnits.hh"
74#include "G4Pow.hh"
76//
78 G4double AT1, G4double r1)
79{
80//
81//
82// Initialise variables for interaction geometry.
83//
85 AP = AP1;
86 AT = AT1;
87 rP = aR.GetWilsonRadius(AP);
88 rT = aR.GetWilsonRadius(AT);
89 r = r1;
90 n = rP / (rP + rT);
91 b = r / (rP + rT);
92 m = rT / rP;
93 Q = (1.0 - b)/n;
94 S = Q * Q;
95 T = S * Q;
96 R = std::sqrt(m*n);
97 U = 1.0/m - 2.0;
98//
99//
100// Initialise the threshold radius-ratio at which interactions are considered
101// peripheral or central.
102//
103 rth = 2.0/3.0;
104 B = 10.0 * MeV;
105}
107//
109{;}
111//
113 {if (rth1 > 0.0 && rth1 <= 1.0) rth = rth1;}
115//
117 {return rth;}
119//
121{
122//
123//
124// Initialise the value for P, then determine the actual value depending upon
125// whether the projectile is larger or smaller than the target and these radii
126// in relation to the impact parameter.
127//
128 G4double valueP = 0.0;
129
130 if (rT > rP)
131 {
132 if (rT-rP<=r && r<=rT+rP) valueP = 0.125*R*U*S - 0.125*(0.5*R*U+1.0)*T;
133 else valueP = -1.0;
134 }
135 else
136 {
137 if (rP-rT<=r && r<=rP+rT) valueP = 0.125*R*U*S - 0.125*(0.5*std::sqrt(n/m)*U-
138 (std::sqrt(1.0-m*m)/n - 1.0)*std::sqrt((2.0-m)/G4Pow::GetInstance()->powN(m,5)))*T;
139 else valueP = (std::sqrt(1.0-m*m)/n-1.0)*std::sqrt(1.0-b*b/n/n);
140 }
141
142 if (!(valueP <= 1.0 && valueP>= -1.0))
143 {
144 if (valueP > 1.0) valueP = 1.0;
145 else valueP = -1.0;
146 }
147 return valueP;
148}
150//
152{
153//
154//
155// Initialise the value for F, then determine the actual value depending upon
156// whether the projectile is larger or smaller than the target and these radii
157// in relation to the impact parameter.
158//
159 G4double valueF = 0.0;
160
161 if (rT > rP)
162 {
163 if (rT-rP<=r && r<=rT+rP) valueF = 0.75*R*S - 0.125*(3.0*R-1.0)*T;
164 else valueF = 1.0;
165 }
166 else
167 {
168 if (rP-rT<=r && r<=rP+rT) valueF = 0.75*R*S - 0.125*(3.0*std::sqrt(n/m)-
169 (1.0-G4Pow::GetInstance()->powA(1.0-m*m,3.0/2.0))*std::sqrt(1.0-G4Pow::GetInstance()->powN(1.0-m,2))/G4Pow::GetInstance()->powN(m,3))*T;
170 else valueF = (1.0-G4Pow::GetInstance()->powA(1.0-m*m,3.0/2.0))*std::sqrt(1.0-b*b/n/n);
171 }
172
173 if (!(valueF <= 1.0 && valueF>= 0.0))
174 {
175 if (valueF > 1.0) valueF = 1.0;
176 else valueF = 0.0;
177 }
178 return valueF;
179}
181//
183{
184 G4double F1 = F();
185 G4double P1 = P();
186 G4double Es = 0.0;
187
188 Es = 0.95 * MeV * 4.0 * pi * rP*rP/fermi/fermi *
189 (1.0+P1-G4Pow::GetInstance()->A23(1.0-F1));
190// if (rT < rP && r < rP-rT)
191 if ((r-rP)/rT < rth)
192 {
193 G4double omega = 0.0;
194 if (AP < 12.0) omega = 1500.0;
195 else if (AP <= 16.0) omega = 1500.0 - 320.0*(AP-12.0);
196 Es *= 1.0 + F1*(5.0+omega*F1*F1);
197 }
198
199 if (Es < 0.0)
200 Es = 0.0;
201 else if (Es > B * AP)
202 Es = B * AP;
203 return Es;
204}
205
206
208{
209 // This member function declares a new G4NuclearAbrasionGeometry object
210 // but with the projectile and target exchanged to determine the values
211 // for F and P. Determination of the excess surface area and excitation
212 // energy is as above.
213
214 G4NuclearAbrasionGeometry* revAbrasionGeometry =
216 G4double F1 = revAbrasionGeometry->F();
217 G4double P1 = revAbrasionGeometry->P();
218 G4double Es = 0.0;
219
220 Es = 0.95 * MeV * 4.0 * pi * rT*rT/fermi/fermi *
221 (1.0+P1-G4Pow::GetInstance()->A23(1.0-F1));
222
223// if (rP < rT && r < rT-rP)
224 if ((r-rT)/rP < rth) {
225 G4double omega = 0.0;
226 if (AT < 12.0) omega = 1500.0;
227 else if (AT <= 16.0) omega = 1500.0 - 320.0*(AT-12.0);
228 Es *= 1.0 + F1*(5.0+omega*F1*F1);
229 }
230
231 if (Es < 0.0)
232 Es = 0.0;
233 else if (Es > B * AT)
234 Es = B * AT;
235
236 delete revAbrasionGeometry;
237
238 return Es;
239}
static const G4double * P1[nN]
static constexpr double fermi
Definition: G4SIunits.hh:83
static constexpr double MeV
Definition: G4SIunits.hh:200
static constexpr double pi
Definition: G4SIunits.hh:55
double G4double
Definition: G4Types.hh:83
G4NuclearAbrasionGeometry(G4double AP, G4double AT, G4double r)
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:166
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
G4double A23(G4double A) const
Definition: G4Pow.hh:131
G4double GetWilsonRadius(G4double A)