Geant4-11
G4MagHelicalStepper.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4MagHelicalStepper implementation
27//
28// Given a purely magnetic field a better approach than adding a straight line
29// (as in the normal runge-kutta-methods) is to add helix segments to the
30// current position
31//
32// Created: J.Apostolakis, CERN - 05.11.1998
33// --------------------------------------------------------------------
34
37#include "G4SystemOfUnits.hh"
38#include "G4LineSection.hh"
39#include "G4Mag_EqRhs.hh"
40
41// Constant for determining unit conversion when using normal as integrand.
42//
44
46 : G4MagIntegratorStepper(EqRhs, 6), // integrate over 6 variables only !!
47 // position & velocity
48 fPtrMagEqOfMot(EqRhs)
49{
50}
51
53{
54}
55
56void
58 G4ThreeVector Bfld,
59 G4double h,
60 G4double yHelix[],
61 G4double yHelix2[] )
62{
63 // const G4int nvar = 6;
64
65 // OLD const G4double approc_limit = 0.05;
66 // OLD approc_limit = 0.05 gives max.error=x^5/5!=(0.05)^5/5!=2.6*e-9
67 // NEW approc_limit = 0.005 gives max.error=x^5/5!=2.6*e-14
68
69 const G4double approc_limit = 0.005;
70 G4ThreeVector Bnorm, B_x_P, vperp, vpar;
71
72 G4double B_d_P;
73 G4double B_v_P;
74 G4double Theta;
75 G4double R_1;
76 G4double R_Helix;
77 G4double CosT2, SinT2, CosT, SinT;
78 G4ThreeVector positionMove, endTangent;
79
80 G4double Bmag = Bfld.mag();
81 const G4double* pIn = yIn+3;
82 G4ThreeVector initVelocity = G4ThreeVector( pIn[0], pIn[1], pIn[2]);
83 G4double velocityVal = initVelocity.mag();
84 G4ThreeVector initTangent = (1.0/velocityVal) * initVelocity;
85
86 R_1 = GetInverseCurve(velocityVal,Bmag);
87
88 // for too small magnetic fields there is no curvature
89 // (include momentum here) FIXME
90
91 if( (std::fabs(R_1) < 1e-10)||(Bmag<1e-12) )
92 {
93 LinearStep( yIn, h, yHelix );
94
95 // Store and/or calculate parameters for chord distance
96
97 SetAngCurve(1.);
98 SetCurve(h);
99 SetRadHelix(0.);
100 }
101 else
102 {
103 Bnorm = (1.0/Bmag)*Bfld;
104
105 // calculate the direction of the force
106
107 B_x_P = Bnorm.cross(initTangent);
108
109 // parallel and perp vectors
110
111 B_d_P = Bnorm.dot(initTangent); // this is the fraction of P parallel to B
112
113 vpar = B_d_P * Bnorm; // the component parallel to B
114 vperp= initTangent - vpar; // the component perpendicular to B
115
116 B_v_P = std::sqrt( 1 - B_d_P * B_d_P); // Fraction of P perp to B
117
118 // calculate the stepping angle
119
120 Theta = R_1 * h; // * B_v_P;
121
122 // Trigonometrix
123
124 if( std::fabs(Theta) > approc_limit )
125 {
126 SinT = std::sin(Theta);
127 CosT = std::cos(Theta);
128 }
129 else
130 {
131 G4double Theta2 = Theta*Theta;
132 G4double Theta3 = Theta2 * Theta;
133 G4double Theta4 = Theta2 * Theta2;
134 SinT = Theta - 1.0/6.0 * Theta3;
135 CosT = 1 - 0.5 * Theta2 + 1.0/24.0 * Theta4;
136 }
137
138 // the actual "rotation"
139
140 G4double R = 1.0 / R_1;
141
142 positionMove = R * ( SinT * vperp + (1-CosT) * B_x_P) + h * vpar;
143 endTangent = CosT * vperp + SinT * B_x_P + vpar;
144
145 // Store the resulting position and tangent
146
147 yHelix[0] = yIn[0] + positionMove.x();
148 yHelix[1] = yIn[1] + positionMove.y();
149 yHelix[2] = yIn[2] + positionMove.z();
150 yHelix[3] = velocityVal * endTangent.x();
151 yHelix[4] = velocityVal * endTangent.y();
152 yHelix[5] = velocityVal * endTangent.z();
153
154 // Store 2*h step Helix if exist
155
156 if(yHelix2)
157 {
158 SinT2 = 2.0 * SinT * CosT;
159 CosT2 = 1.0 - 2.0 * SinT * SinT;
160 endTangent = (CosT2 * vperp + SinT2 * B_x_P + vpar);
161 positionMove = R * ( SinT2 * vperp + (1-CosT2) * B_x_P) + h*2 * vpar;
162
163 yHelix2[0] = yIn[0] + positionMove.x();
164 yHelix2[1] = yIn[1] + positionMove.y();
165 yHelix2[2] = yIn[2] + positionMove.z();
166 yHelix2[3] = velocityVal * endTangent.x();
167 yHelix2[4] = velocityVal * endTangent.y();
168 yHelix2[5] = velocityVal * endTangent.z();
169 }
170
171 // Store and/or calculate parameters for chord distance
172
173 G4double ptan=velocityVal*B_v_P;
174
175 G4double particleCharge = fPtrMagEqOfMot->FCof() / (eplus*c_light);
176 R_Helix =std::abs( ptan/(fUnitConstant * particleCharge*Bmag));
177
178 SetAngCurve(std::abs(Theta));
179 SetCurve(std::abs(R));
180 SetRadHelix(R_Helix);
181 }
182}
183
184// Use the midpoint method to get an error estimate and correction
185// modified from G4ClassicalRK4: W.Wander <wwc@mit.edu> 12/09/97
186//
187void
189 const G4double*,
190 G4double hstep,
191 G4double yOut[],
192 G4double yErr[] )
193{
194 const G4int nvar = 6;
195
196 // correction for Richardson Extrapolation.
197 // G4double correction = 1. / ( (1 << IntegratorOrder()) -1 );
198
199 G4double yTemp[8], yIn[8] ;
200 G4ThreeVector Bfld_initial, Bfld_midpoint;
201
202 // Saving yInput because yInput and yOut can be aliases for same array
203 //
204 for(G4int i=0; i<nvar; ++i)
205 {
206 yIn[i]=yInput[i];
207 }
208
209 G4double h = hstep * 0.5;
210
211 MagFieldEvaluate(yIn, Bfld_initial) ;
212
213 // Do two half steps
214 //
215 DumbStepper(yIn, Bfld_initial, h, yTemp);
216 MagFieldEvaluate(yTemp, Bfld_midpoint) ;
217 DumbStepper(yTemp, Bfld_midpoint, h, yOut);
218
219 // Do a full Step
220 //
221 h = hstep ;
222 DumbStepper(yIn, Bfld_initial, h, yTemp);
223
224 // Error estimation
225 //
226 for(G4int i=0; i<nvar; ++i)
227 {
228 yErr[i] = yOut[i] - yTemp[i] ;
229 }
230
231 return;
232}
233
236{
237 // Check whether h/R > pi !!
238 // Method DistLine is good only for < pi
239
240 G4double Ang=GetAngCurve();
241 if(Ang<=pi)
242 {
243 return GetRadHelix()*(1-std::cos(0.5*Ang));
244 }
245 else
246 {
247 if(Ang<twopi)
248 {
249 return GetRadHelix()*(1+std::cos(0.5*(twopi-Ang)));
250 }
251 else // return Diameter of projected circle
252 {
253 return 2*GetRadHelix();
254 }
255 }
256}
static constexpr double m
Definition: G4SIunits.hh:109
static constexpr double twopi
Definition: G4SIunits.hh:56
static constexpr double tesla
Definition: G4SIunits.hh:259
static constexpr double eplus
Definition: G4SIunits.hh:184
static constexpr double GeV
Definition: G4SIunits.hh:203
static constexpr double pi
Definition: G4SIunits.hh:55
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
double z() const
double x() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
double dot(const Hep3Vector &) const
double mag() const
static const G4double fUnitConstant
void SetCurve(const G4double Curve)
void AdvanceHelix(const G4double yIn[], G4ThreeVector Bfld, G4double h, G4double yHelix[], G4double yHelix2[]=0)
void SetRadHelix(const G4double Rad)
virtual void DumbStepper(const G4double y[], G4ThreeVector Bfld, G4double h, G4double yout[])=0
G4double GetRadHelix() const
void MagFieldEvaluate(const G4double y[], G4ThreeVector &Bfield)
G4MagHelicalStepper(G4Mag_EqRhs *EqRhs)
G4double GetInverseCurve(const G4double Momentum, const G4double Bmag)
void LinearStep(const G4double yIn[], G4double h, G4double yHelix[]) const
G4double DistChord() const
virtual void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[])
void SetAngCurve(const G4double Ang)
G4double GetAngCurve() const
G4double FCof() const
Definition: G4Mag_EqRhs.hh:62
float c_light
Definition: hepunit.py:256