Geant4-11
G4IonCoulombCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4IonCoulombCrossSection.cc
27//-------------------------------------------------------------------
28//
29// GEANT4 Class header file
30//
31// File name: G4IonCoulombCrossSection
32//
33// Author: Cristina Consolandi
34//
35// Creation date: 05.10.2010 from G4eCoulombScatteringModel
36//
37// Class Description:
38// Computation of Screen-Coulomb Cross Section
39// for protons, alpha and heavy Ions
40//
41//
42// Reference:
43// M.J. Boschini et al. "Nuclear and Non-Ionizing Energy-Loss
44// for Coulomb Scattered Particles from Low Energy up to Relativistic
45// Regime in Space Radiation Environment"
46// Accepted for publication in the Proceedings of the ICATPP Conference
47// on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo, 7-8
48// October, 2010, to be published by World Scientific (Singapore).
49//
50// Available for downloading at:
51// http://arxiv.org/abs/1011.4822
52//
53// -------------------------------------------------------------------
54//
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
56
59#include "Randomize.hh"
60#include "G4Proton.hh"
61#include "G4Exp.hh"
62#include "G4Log.hh"
63
64//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
65
66using namespace std;
67
69
71 cosThetaMin(1.0),
72 cosThetaMax(-1.0),
74{
78 particle=0;
79
81 coeff = twopi*p0*p0;
82
85 nucXSection =0;
86
87 chargeSquare = spin = mass = 0.0;
89
91}
92//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
93
95{}
96
97//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
98
100 G4double CosThetaLim)
101{
102 SetupParticle(p);
103 nucXSection = tkin = targetZ = mom2 = 0.0;
104 etag = DBL_MAX;
105 particle = p;
106 cosThetaMin = CosThetaLim;
107}
108
109//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
110
112{
113 if(ekin != tkinLab || tmass != targetMass) {
114
115 // lab
116 tkinLab = ekin;
117 momLab2 = tkinLab*(tkinLab + 2.0*mass);
119
120 G4double etot = tkinLab + mass;
121 G4double ptot = sqrt(momLab2);
122 G4double m12 = mass*mass;
123 // relativistic reduced mass from publucation
124 // A.P. Martynenko, R.N. Faustov, Teoret. mat. Fiz. 64 (1985) 179
125
126 //incident particle & target nucleus
127 targetMass = tmass;
128 G4double Ecm=sqrt(m12 + targetMass*targetMass + 2.0*etot*targetMass);
129 G4double mu_rel=mass*targetMass/Ecm;
130 G4double momCM= ptot*targetMass/Ecm;
131 // relative system
132 mom2 = momCM*momCM;
133 invbeta2 = 1.0 + mu_rel*mu_rel/mom2;
134 tkin = momCM*sqrt(invbeta2) - mu_rel;//Ekin of mu_rel
135
138 }
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142
144 G4int)
145{
146 if(Z != targetZ || e != etag) {
147 etag = e;
148 targetZ = Z;
149 G4int iz= G4lrint(Z);
150
152 screenZ = 0;
154 //heavycorr = 0;
155 // G4cout<< "heavycorr "<<heavycorr<<G4endl;
156
157 G4double corr=5.*twopi*Z*std::sqrt(chargeSquare*alpha2);
158 corr=G4Exp(G4Log(corr)*0.04);
159 screenZ *=0.5*(1.13 + corr*3.76*Z*Z*chargeSquare*invbeta2*alpha2);
160 // G4cout<<" heavycorr Z e corr....2As "<< heavycorr << "\t"
161 // <<Z <<"\t"<<e/MeV <<"\t"<<screenZ<<G4endl;
162
163 if(1 == iz && particle == theProton && cosTetMaxNuc < 0.0) {
164 cosTetMaxNuc = 0.0;
165 }
166 }
167}
168
169//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
170
172{
173 //for proton Thomas-Fermi screening length
174 G4int Z1 = G4lrint(std::sqrt(chargeSquare));
175 G4double Z113 = fG4pow->Z13(iz);
176 G4double Z1023 = fG4pow->powZ(Z1,0.23);
177 G4double Z2023 = fG4pow->powZ(iz,0.23);
178 G4double x=a0*(Z1023+Z2023);
179
180 // Universal screening length
181 if(particle == theProton){
182 x = a0*Z113;
183 }
184
185 ScreenRSquare = alpha2*x*x;
186}
187
188//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
189
191{
192 // This method needs initialisation before be called
193 // scattering with target nucleus
195
196 nucXSection = 0.0;
197
198 G4double x = 1.0 - cosTetMinNuc;
199 G4double x1 = x + screenZ;
200
201 // scattering with nucleus
204 (x1*(1.0 - cosTetMaxNuc + screenZ));
205 }
206
207 return nucXSection;
208}
209
210//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
211
213{
214 G4double z1 = 0.0;
216
217 G4double x1 = 1. - cosTetMinNuc + screenZ;
218 G4double x2 = 1. - cosTetMaxNuc + screenZ;
220 z1 = x1*x2/(x1 + G4UniformRand()*dx) - screenZ;
221 }
222 return z1;
223}
224
225//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
226
227
228
229
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
const G4double a0
G4double G4Log(G4double x)
Definition: G4Log.hh:226
static const G4double fac
static constexpr double twopi
Definition: G4SIunits.hh:56
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double alpha2
#define G4UniformRand()
Definition: Randomize.hh:52
void Initialise(const G4ParticleDefinition *, G4double cosThetaLim)
const G4ParticleDefinition * theProton
void SetupTarget(G4double Z, G4double kinEnergy, G4int heavycorr)
const G4ParticleDefinition * particle
void SetupKinematic(G4double kinEnergy, G4double tmass)
void SetupParticle(const G4ParticleDefinition *)
static G4NistManager * Instance()
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:225
G4double Z13(G4int Z) const
Definition: G4Pow.hh:123
static G4Proton * Proton()
Definition: G4Proton.cc:92
static constexpr double electron_mass_c2
static const G4double Z1[5]
Definition: paraMaker.cc:41
float electron_mass_c2
Definition: hepunit.py:273
int classic_electr_radius
Definition: hepunit.py:287
int fine_structure_const
Definition: hepunit.py:286
int G4lrint(double ad)
Definition: templates.hh:134
#define DBL_MAX
Definition: templates.hh:62