Geant4-11
G4INCLTransmissionChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
39
40namespace G4INCL {
41
43 : theNucleus(nucleus), theParticle(particle),
44 refraction(false),
45 pOutMag(0.),
46 kineticEnergyOutside(initializeKineticEnergyOutside()),
47 cosRefractionAngle(1.)
48 {}
49
50 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double TOut)
51 : theNucleus(nucleus), theParticle(particle),
52 refraction(false),
53 pOutMag(0.),
54 kineticEnergyOutside(TOut),
55 cosRefractionAngle(1.)
56 {}
57
58 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double kOut, const G4double cosR)
59 : theNucleus(nucleus), theParticle(particle),
60 refraction(true),
61 pOutMag(kOut),
62 kineticEnergyOutside(initializeKineticEnergyOutside()),
63 cosRefractionAngle(cosR)
64 {}
65
67
69 // The particle energy outside the nucleus. Subtract the nuclear
70 // potential from the kinetic energy when leaving the nucleus
74
75 // Correction for real masses
76 const G4int AParent = theNucleus->getA();
77 const G4int ZParent = theNucleus->getZ();
78 const G4int SParent = theNucleus->getS();
79 const G4double theQValueCorrection = theParticle->getEmissionQValueCorrection(AParent,ZParent,SParent);
80 TOut += theQValueCorrection;
81 return TOut;
82 }
83
85
86 // Use the table mass in the outside world
89
90 if(refraction) {
91 // Change the momentum direction
92 // The magnitude of the particle momentum outside the nucleus will be
93 // fixed by the kineticEnergyOutside variable. This is done in order to
94 // avoid numerical inaccuracies.
96 const G4double r2 = position.mag2();
98 if(r2>0.)
99 normal = position / std::sqrt(r2);
100
101 const ThreeVector &momentum = theParticle->getMomentum();
102
103 const ThreeVector pOut = normal * (pOutMag * cosRefractionAngle) + momentum - normal * normal.dot(momentum);
104// assert(std::fabs(pOut.mag()-pOutMag)<1.e-5);
105
107 }
108 // Scaling factor for the particle momentum
111 }
112
114 G4double initialEnergy = 0.0;
115 initialEnergy = theParticle->getEnergy() - theParticle->getPotentialEnergy();
116 // Correction for real masses
117 const G4int AParent = theNucleus->getA();
118 const G4int ZParent = theNucleus->getZ();
119 const G4int SParent = theNucleus->getS();
120 initialEnergy += theParticle->getTableMass() - theParticle->getMass()
121 + theParticle->getEmissionQValueCorrection(AParent,ZParent,SParent);
123 fs->setTotalEnergyBeforeInteraction(initialEnergy);
124 fs->addOutgoingParticle(theParticle); // We write the particle down as outgoing
125 }
126}
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
void setTotalEnergyBeforeInteraction(G4double E)
void addOutgoingParticle(Particle *p)
void setPotentialEnergy(G4double v)
Set the particle potential energy.
G4int getS() const
Returns the strangeness number.
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
G4double getEnergy() const
G4double getPotentialEnergy() const
Get the particle potential energy.
G4int getZ() const
Returns the charge number.
const G4INCL::ThreeVector & getPosition() const
const ThreeVector & adjustMomentumFromEnergy()
Rescale the momentum to match the total energy.
const G4INCL::ThreeVector & getMomentum() const
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
virtual G4double getTableMass() const
Get the tabulated particle mass.
void setEnergy(G4double energy)
G4double getMass() const
Get the cached particle mass.
void setTableMass()
Set the mass of the Particle to its table mass.
G4int getA() const
Returns the baryon number.
G4double initializeKineticEnergyOutside()
Kinetic energy of the transmitted particle.
const G4double cosRefractionAngle
Cosine of the refraction angle.
const G4double pOutMag
Momentum of the particle outside the nucleus.
void particleLeaves()
Modify particle that leaves the nucleus.
TransmissionChannel(Nucleus *n, Particle *p)
const G4double kineticEnergyOutside
Kinetic energy of the particle outside the nucleus.
const G4bool refraction
True if refraction should be applied.
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:79