Geant4-11
G4INCLEventInfo.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
47#include "G4INCLEventInfo.hh"
48#include "G4INCLGlobals.hh"
50#include "G4INCLParticle.hh"
51#include <cmath>
52
53namespace G4INCL {
54
56
58 const Double_t beta = std::sqrt(1.-1./(gamma*gamma));
59 for(Int_t i=0; i<nParticles; ++i) {
60 // determine the particle mass from the kinetic energy and the momentum;
61 // this ensures consistency with the masses uses by the models
62 Double_t mass;
63 if(EKin[i]>0.) {
64 mass = std::max(
65 0.5 * (px[i]*px[i]+py[i]*py[i]+pz[i]*pz[i]-EKin[i]*EKin[i]) / EKin[i],
66 0.0);
67 } else {
68 INCL_WARN("Particle with null kinetic energy in fillInverseKinematics, cannot determine its mass:\n"
69 << " A=" << A[i] << ", Z=" << Z[i] << ", S=" << S[i] << '\n'
70 << " EKin=" << EKin[i] << ", px=" << px[i] << ", py=" << py[i] << ", pz=" << pz[i] << '\n'
71 << " Falling back to the mass from the INCL ParticleTable" << '\n');
72 mass = ParticleTable::getRealMass(A[i], Z[i], S[i]);
73 }
74
75 const Double_t ETot = EKin[i] + mass;
76 const Double_t ETotPrime = gamma*(ETot - beta*pz[i]);
77 EKinPrime[i] = ETotPrime - mass;
78 pzPrime[i] = -gamma*(pz[i] - beta*ETot);
79 const Double_t pPrime = std::sqrt(px[i]*px[i] + py[i]*py[i] + pzPrime[i]*pzPrime[i]);
80 const Double_t cosThetaPrime = (pPrime>0.) ? (pzPrime[i]/pPrime) : 1.;
81 if(cosThetaPrime>=1.)
82 thetaPrime[i] = 0.;
83 else if(cosThetaPrime<=-1.)
84 thetaPrime[i] = 180.;
85 else
86 thetaPrime[i] = Math::toDegrees(Math::arcCos(cosThetaPrime));
87 }
88 }
89
90 void EventInfo::remnantToParticle(const G4int remnantIndex) {
91
92 INCL_DEBUG("remnantToParticle function used\n");
93
94 A[nParticles] = ARem[remnantIndex];
95 Z[nParticles] = ZRem[remnantIndex];
96 S[nParticles] = SRem[remnantIndex];
97
100
103
104 px[nParticles] = pxRem[remnantIndex];
105 py[nParticles] = pyRem[remnantIndex];
106 pz[nParticles] = pzRem[remnantIndex];
107
108 const G4double plab = std::sqrt(pxRem[remnantIndex]*pxRem[remnantIndex]
109 +pyRem[remnantIndex]*pyRem[remnantIndex]
110 +pzRem[remnantIndex]*pzRem[remnantIndex]);
111 G4double pznorm = pzRem[remnantIndex]/plab;
112 if(pznorm>1.)
113 pznorm = 1.;
114 else if(pznorm<-1.)
115 pznorm = -1.;
117 phi[nParticles] = Math::toDegrees(std::atan2(pyRem[remnantIndex],pxRem[remnantIndex]));
118
119 EKin[nParticles] = EKinRem[remnantIndex];
120 origin[nParticles] = -1; // Origin: cascade
121 history.push_back(""); // history
122 nParticles++;
123// assert(history.size()==(unsigned int)nParticles);
124 }
125}
126
Simple container for output of event results.
#define INCL_WARN(x)
#define INCL_DEBUG(x)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4int getPDGCode() const
Set a PDG Code (MONTE CARLO PARTICLE NUMBERING)
static G4double getTotalBias()
General bias vector function.
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double arcCos(const G4double x)
Calculates arccos with some tolerance on illegal arguments.
G4double toDegrees(G4double radians)
G4double getRealMass(const G4INCL::ParticleType t)
Get particle mass (in MeV/c^2)
G4int Int_t
G4double Double_t
Short_t S[maxSizeParticles]
Particle strangeness number.
Short_t origin[maxSizeParticles]
Origin of the particle.
Float_t theta[maxSizeParticles]
Particle momentum polar angle [radians].
Short_t A[maxSizeParticles]
Particle mass number.
Float_t EKinRem[maxSizeRemnants]
Remnant kinetic energy [MeV].
Float_t pzPrime[maxSizeParticles]
Particle momentum, z component, in inverse kinematics [MeV/c].
Float_t emissionTime[maxSizeParticles]
Emission time [fm/c].
Float_t stoppingTime
Cascade stopping time [fm/c].
Float_t phi[maxSizeParticles]
Particle momentum azimuthal angle [radians].
Short_t Z[maxSizeParticles]
Particle charge number.
std::vector< std::string > history
History of the particle.
Float_t EKin[maxSizeParticles]
Particle kinetic energy [MeV].
Short_t nParticles
Number of particles in the final state.
Float_t px[maxSizeParticles]
Particle momentum, x component [MeV/c].
Float_t ParticleBias[maxSizeParticles]
Particle weight due to the bias.
Short_t SRem[maxSizeRemnants]
Remnant strangeness number.
Float_t pxRem[maxSizeRemnants]
Remnant momentum, x component [MeV/c].
Float_t thetaPrime[maxSizeParticles]
Particle momentum polar angle, in inverse kinematics [radians].
Float_t pyRem[maxSizeRemnants]
Remnant momentum, y component [MeV/c].
Float_t EKinPrime[maxSizeParticles]
Particle kinetic energy, in inverse kinematics [MeV].
Float_t pzRem[maxSizeRemnants]
Remnant momentum, z component [MeV/c].
static G4ThreadLocal Int_t eventNumber
Number of the event.
Float_t pz[maxSizeParticles]
Particle momentum, z component [MeV/c].
Int_t PDGCode[maxSizeParticles]
PDG numbering of the particles.
void fillInverseKinematics(const Double_t gamma)
Fill the variables describing the reaction in inverse kinematics.
Float_t py[maxSizeParticles]
Particle momentum, y component [MeV/c].
void remnantToParticle(const G4int remnantIndex)
Move a remnant to the particle array.
Short_t ARem[maxSizeRemnants]
Remnant mass number.
Short_t ZRem[maxSizeRemnants]
Remnant charge number.
#define G4ThreadLocal
Definition: tls.hh:77