Geant4-11
source
geometry
magneticfield
include
G4HelixImplicitEuler.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
// G4HelixImplicitEuler
27
//
28
// Class description:
29
//
30
// Helix Implicit Euler stepper for magnetic field:
31
// x_1 = x_0 + 1/2 * ( helix(h,t_0,x_0)
32
// + helix(h,t_0+h,x_0+helix(h,t0,x0) ) )
33
// Second order solver.
34
// Take the current derivative and add it to the current position.
35
// Take the output and its derivative. Add the mean of both derivatives
36
// to form the final output.
37
38
// Author: W.Wander <wwc@mit.edu>, 03/11/1998
39
// -------------------------------------------------------------------
40
#ifndef G4HELIXIMPLICITEULER_HH
41
#define G4HELIXIMPLICITEULER_HH
42
43
#include "
G4MagHelicalStepper.hh
"
44
45
class
G4HelixImplicitEuler
:
public
G4MagHelicalStepper
46
{
47
48
public
:
// with description
49
50
G4HelixImplicitEuler
(
G4Mag_EqRhs
*EqRhs);
51
~G4HelixImplicitEuler
();
52
53
void
DumbStepper
(
const
G4double
y[],
54
G4ThreeVector
Bfld,
55
G4double
h,
56
G4double
yout[] );
57
58
public
:
// without description
59
60
inline
G4int
IntegratorOrder
()
const
{
return
2; }
61
};
62
63
#endif
G4MagHelicalStepper.hh
G4double
double G4double
Definition:
G4Types.hh:83
G4int
int G4int
Definition:
G4Types.hh:85
CLHEP::Hep3Vector
Definition:
ThreeVector.h:36
G4HelixImplicitEuler
Definition:
G4HelixImplicitEuler.hh:46
G4HelixImplicitEuler::DumbStepper
void DumbStepper(const G4double y[], G4ThreeVector Bfld, G4double h, G4double yout[])
Definition:
G4HelixImplicitEuler.cc:52
G4HelixImplicitEuler::~G4HelixImplicitEuler
~G4HelixImplicitEuler()
Definition:
G4HelixImplicitEuler.cc:47
G4HelixImplicitEuler::IntegratorOrder
G4int IntegratorOrder() const
Definition:
G4HelixImplicitEuler.hh:60
G4HelixImplicitEuler::G4HelixImplicitEuler
G4HelixImplicitEuler(G4Mag_EqRhs *EqRhs)
Definition:
G4HelixImplicitEuler.cc:42
G4MagHelicalStepper
Definition:
G4MagHelicalStepper.hh:51
G4Mag_EqRhs
Definition:
G4Mag_EqRhs.hh:47
Generated by
1.9.3