Geant4-11
G4DNABornIonisationModel1.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
30#include "G4SystemOfUnits.hh"
32#include "G4LossTableManager.hh"
35#include "G4DNABornAngle.hh"
36#include "G4DeltaAngle.hh"
37#include "G4Exp.hh"
38
39//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
40
41using namespace std;
42
43//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
44
46 const G4String& nam) :
47G4VEmModel(nam), isInitialised(false)
48{
49 verboseLevel = 0;
50 // Verbosity scale:
51 // 0 = nothing
52 // 1 = warning for energy non-conservation
53 // 2 = details of energy budget
54 // 3 = calculation of cross sections, file openings, sampling of atoms
55 // 4 = entering in methods
56
57 if (verboseLevel > 0)
58 {
59 G4cout << "Born ionisation model is constructed " << G4endl;
60 }
61
62 // Mark this model as "applicable" for atomic deexcitation
67
68 // Define default angular generator
70
71 // Selection of computation method
72
73 fasterCode = false;
74
75 // Selection of stationary mode
76
77 statCode = false;
78
79 // Selection of SP scaling
80
81 spScaling = true;
82}
83
84//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
85
87{
88 // Cross section
89
90 std::map<G4String, G4DNACrossSectionDataSet*, std::less<G4String> >::iterator pos;
91 for (pos = tableData.begin(); pos != tableData.end(); ++pos)
92 {
93 G4DNACrossSectionDataSet* table = pos->second;
94 delete table;
95 }
96
97 // Final state
98
99 eVecm.clear();
100 pVecm.clear();
101}
102
103//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
104
106 const G4DataVector& /*cuts*/)
107{
108
109 if (verboseLevel > 3)
110 {
111 G4cout << "Calling G4DNABornIonisationModel1::Initialise()" << G4endl;
112 }
113
114 // Energy limits
115
116 G4String fileElectron("dna/sigma_ionisation_e_born");
117 G4String fileProton("dna/sigma_ionisation_p_born");
118
121
124
125 G4double scaleFactor = (1.e-22 / 3.343) * m*m;
126
127 char *path = getenv("G4LEDATA");
128
129 // *** ELECTRON
130
131 electron = electronDef->GetParticleName();
132
133 tableFile[electron] = fileElectron;
134
135 lowEnergyLimit[electron] = 11. * eV;
137
138 // Cross section
139
141 tableE->LoadData(fileElectron);
142
143 tableData[electron] = tableE;
144
145 // Final state
146
147 std::ostringstream eFullFileName;
148
149 if (fasterCode) eFullFileName << path << "/dna/sigmadiff_cumulated_ionisation_e_born_hp.dat";
150 if (!fasterCode) eFullFileName << path << "/dna/sigmadiff_ionisation_e_born.dat";
151
152 std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
153
154 if (!eDiffCrossSection)
155 {
156 if (fasterCode) G4Exception("G4DNABornIonisationModel1::Initialise","em0003",
157 FatalException,"Missing data file:/dna/sigmadiff_cumulated_ionisation_e_born_hp.dat");
158
159 if (!fasterCode) G4Exception("G4DNABornIonisationModel1::Initialise","em0003",
160 FatalException,"Missing data file:/dna/sigmadiff_ionisation_e_born.dat");
161 }
162
163 // Clear the arrays for re-initialization case (MT mode)
164 // March 25th, 2014 - Vaclav Stepan, Sebastien Incerti
165
166 eTdummyVec.clear();
167 pTdummyVec.clear();
168
169 eVecm.clear();
170 pVecm.clear();
171
172 for (G4int j=0; j<5; j++)
173 {
174 eProbaShellMap[j].clear();
175 pProbaShellMap[j].clear();
176
177 eDiffCrossSectionData[j].clear();
178 pDiffCrossSectionData[j].clear();
179
180 eNrjTransfData[j].clear();
181 pNrjTransfData[j].clear();
182 }
183
184 //
185
186 eTdummyVec.push_back(0.);
187 while(!eDiffCrossSection.eof())
188 {
189 G4double tDummy;
190 G4double eDummy;
191 eDiffCrossSection>>tDummy>>eDummy;
192 if (tDummy != eTdummyVec.back()) eTdummyVec.push_back(tDummy);
193
194 G4double tmp;
195 for (G4int j=0; j<5; j++)
196 {
197 eDiffCrossSection>> tmp;
198
199 eDiffCrossSectionData[j][tDummy][eDummy] = tmp;
200
201 if (fasterCode)
202 {
203 eNrjTransfData[j][tDummy][eDiffCrossSectionData[j][tDummy][eDummy]]=eDummy;
204 eProbaShellMap[j][tDummy].push_back(eDiffCrossSectionData[j][tDummy][eDummy]);
205 }
206
207 // SI - only if eof is not reached
208 if (!eDiffCrossSection.eof() && !fasterCode) eDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
209
210 if (!fasterCode) eVecm[tDummy].push_back(eDummy);
211
212 }
213 }
214
215 // *** PROTON
216
217 proton = protonDef->GetParticleName();
218
219 tableFile[proton] = fileProton;
220
221 lowEnergyLimit[proton] = 500. * keV;
222 highEnergyLimit[proton] = 100. * MeV;
223
224 // Cross section
225
227 tableP->LoadData(fileProton);
228
229 tableData[proton] = tableP;
230
231 // Final state
232
233 std::ostringstream pFullFileName;
234
235 if (fasterCode) pFullFileName << path << "/dna/sigmadiff_cumulated_ionisation_p_born_hp.dat";
236
237 if (!fasterCode) pFullFileName << path << "/dna/sigmadiff_ionisation_p_born.dat";
238
239 std::ifstream pDiffCrossSection(pFullFileName.str().c_str());
240
241 if (!pDiffCrossSection)
242 {
243 if (fasterCode) G4Exception("G4DNABornIonisationModel1::Initialise","em0003",
244 FatalException,"Missing data file:/dna/sigmadiff_cumulated_ionisation_p_born_hp.dat");
245
246 if (!fasterCode) G4Exception("G4DNABornIonisationModel1::Initialise","em0003",
247 FatalException,"Missing data file:/dna/sigmadiff_ionisation_p_born.dat");
248 }
249
250 pTdummyVec.push_back(0.);
251 while(!pDiffCrossSection.eof())
252 {
253 G4double tDummy;
254 G4double eDummy;
255 pDiffCrossSection>>tDummy>>eDummy;
256 if (tDummy != pTdummyVec.back()) pTdummyVec.push_back(tDummy);
257 for (G4int j=0; j<5; j++)
258 {
259 pDiffCrossSection>>pDiffCrossSectionData[j][tDummy][eDummy];
260
261 if (fasterCode)
262 {
263 pNrjTransfData[j][tDummy][pDiffCrossSectionData[j][tDummy][eDummy]]=eDummy;
264 pProbaShellMap[j][tDummy].push_back(pDiffCrossSectionData[j][tDummy][eDummy]);
265 }
266
267 // SI - only if eof is not reached !
268 if (!pDiffCrossSection.eof() && !fasterCode) pDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
269
270 if (!fasterCode) pVecm[tDummy].push_back(eDummy);
271 }
272 }
273
274 //
275
276 if (particle==electronDef)
277 {
280 }
281
282 if (particle==protonDef)
283 {
286 }
287
288 if( verboseLevel>0 )
289 {
290 G4cout << "Born ionisation model is initialized " << G4endl
291 << "Energy range: "
292 << LowEnergyLimit() / eV << " eV - "
293 << HighEnergyLimit() / keV << " keV for "
294 << particle->GetParticleName()
295 << G4endl;
296 }
297
298 // Initialize water density pointer
299
301 GetNumMolPerVolTableFor(G4Material::GetMaterial("G4_WATER"));
302
303 // AD
304
306
307 //
308
309 if (isInitialised)
310 { return;}
312 isInitialised = true;
313}
314
315//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
316
318 const G4ParticleDefinition* particleDefinition,
319 G4double ekin,
320 G4double,
321 G4double)
322{
323 if (verboseLevel > 3)
324 {
325 G4cout << "Calling CrossSectionPerVolume() of G4DNABornIonisationModel1"
326 << G4endl;
327 }
328
329 if (
330 particleDefinition != G4Proton::ProtonDefinition()
331 &&
332 particleDefinition != G4Electron::ElectronDefinition()
333 )
334
335 return 0;
336
337 // Calculate total cross section for model
338
339 G4double lowLim = 0;
340 G4double highLim = 0;
341 G4double sigma=0;
342
343 G4double waterDensity = (*fpMolWaterDensity)[material->GetIndex()];
344
345 const G4String& particleName = particleDefinition->GetParticleName();
346
347 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
348 pos1 = lowEnergyLimit.find(particleName);
349 if (pos1 != lowEnergyLimit.end())
350 {
351 lowLim = pos1->second;
352 }
353
354 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
355 pos2 = highEnergyLimit.find(particleName);
356 if (pos2 != highEnergyLimit.end())
357 {
358 highLim = pos2->second;
359 }
360
361 if (ekin >= lowLim && ekin <= highLim)
362 {
363 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
364 pos = tableData.find(particleName);
365
366 if (pos != tableData.end())
367 {
368 G4DNACrossSectionDataSet* table = pos->second;
369 if (table != 0)
370 {
371 sigma = table->FindValue(ekin);
372
373 // ICRU49 electronic SP scaling - ZF, SI
374
375 if (particleDefinition == G4Proton::ProtonDefinition() && ekin < 70*MeV && spScaling)
376 {
377 G4double A = 1.39241700556072800000E-009 ;
378 G4double B = -8.52610412942622630000E-002 ;
379 sigma = sigma * G4Exp(A*(ekin/eV)+B);
380 }
381 //
382
383 }
384 }
385 else
386 {
387 G4Exception("G4DNABornIonisationModel1::CrossSectionPerVolume","em0002",
388 FatalException,"Model not applicable to particle type.");
389 }
390 }
391
392 if (verboseLevel > 2)
393 {
394 G4cout << "__________________________________" << G4endl;
395 G4cout << "G4DNABornIonisationModel1 - XS INFO START" << G4endl;
396 G4cout << "Kinetic energy(eV)=" << ekin/eV << " particle : " << particleName << G4endl;
397 G4cout << "Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl;
398 G4cout << "Cross section per water molecule (cm^-1)=" << sigma*waterDensity/(1./cm) << G4endl;
399 G4cout << "G4DNABornIonisationModel1 - XS INFO END" << G4endl;
400 }
401
402 return sigma*waterDensity;
403}
404
405//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
406
407void G4DNABornIonisationModel1::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
408 const G4MaterialCutsCouple* couple,
409 const G4DynamicParticle* particle,
410 G4double,
411 G4double)
412{
413
414 if (verboseLevel > 3)
415 {
416 G4cout << "Calling SampleSecondaries() of G4DNABornIonisationModel1"
417 << G4endl;
418 }
419
420 G4double lowLim = 0;
421 G4double highLim = 0;
422
423 G4double k = particle->GetKineticEnergy();
424
425 const G4String& particleName = particle->GetDefinition()->GetParticleName();
426
427 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
428 pos1 = lowEnergyLimit.find(particleName);
429
430 if (pos1 != lowEnergyLimit.end())
431 {
432 lowLim = pos1->second;
433 }
434
435 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
436 pos2 = highEnergyLimit.find(particleName);
437
438 if (pos2 != highEnergyLimit.end())
439 {
440 highLim = pos2->second;
441 }
442
443 if (k >= lowLim && k <= highLim)
444 {
445 G4ParticleMomentum primaryDirection = particle->GetMomentumDirection();
446 G4double particleMass = particle->GetDefinition()->GetPDGMass();
447 G4double totalEnergy = k + particleMass;
448 G4double pSquare = k * (totalEnergy + particleMass);
449 G4double totalMomentum = std::sqrt(pSquare);
450
451 G4int ionizationShell = 0;
452
453 if (!fasterCode) ionizationShell = RandomSelect(k,particleName);
454
455 // SI: The following protection is necessary to avoid infinite loops :
456 // sigmadiff_ionisation_e_born.dat has non zero partial xs at 18 eV for shell 3 (ionizationShell ==2)
457 // sigmadiff_cumulated_ionisation_e_born.dat has zero cumulated partial xs at 18 eV for shell 3 (ionizationShell ==2)
458 // this is due to the fact that the max allowed transfered energy is (18+10.79)/2=17.025 eV and only transfered energies
459 // strictly above this value have non zero partial xs in sigmadiff_ionisation_e_born.dat (starting at trans = 17.12 eV)
460
461 if (fasterCode)
462 do
463 {
464 ionizationShell = RandomSelect(k,particleName);
465 } while (k<19*eV && ionizationShell==2 && particle->GetDefinition()==G4Electron::ElectronDefinition());
466
469
470 // SI: additional protection if tcs interpolation method is modified
471 if (k<bindingEnergy) return;
472 //
473
474 G4double secondaryKinetic=-1000*eV;
475
476 if (fasterCode == false)
477 {
478 secondaryKinetic = RandomizeEjectedElectronEnergy(particle->GetDefinition(),k,ionizationShell);
479 }
480 else
481 {
482 secondaryKinetic = RandomizeEjectedElectronEnergyFromCumulatedDcs(particle->GetDefinition(),k,ionizationShell);
483 }
484 //
485
486 G4int Z = 8;
487
488 G4ThreeVector deltaDirection =
489 GetAngularDistribution()->SampleDirectionForShell(particle, secondaryKinetic,
490 Z, ionizationShell,
491 couple->GetMaterial());
492
493 if (secondaryKinetic>0)
494 {
495 G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(),deltaDirection,secondaryKinetic);
496 fvect->push_back(dp);
497 }
498
500 {
501 G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 ));
502
503 G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x();
504 G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y();
505 G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z();
506 G4double finalMomentum = std::sqrt(finalPx*finalPx + finalPy*finalPy + finalPz*finalPz);
507 finalPx /= finalMomentum;
508 finalPy /= finalMomentum;
509 finalPz /= finalMomentum;
510
511 G4ThreeVector direction;
512 direction.set(finalPx,finalPy,finalPz);
513
515 }
516
518
519 // AM: sample deexcitation
520 // here we assume that H_{2}O electronic levels are the same as Oxygen.
521 // this can be considered true with a rough 10% error in energy on K-shell,
522
523 size_t secNumberInit = 0;// need to know at a certain point the energy of secondaries
524 size_t secNumberFinal = 0;// So I'll make the diference and then sum the energies
525
526 G4double scatteredEnergy = k-bindingEnergy-secondaryKinetic;
527
528 // SI: only atomic deexcitation from K shell is considered
529 if(fAtomDeexcitation && ionizationShell == 4)
530 {
531 const G4AtomicShell* shell =
533 secNumberInit = fvect->size();
534 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, 0, 0);
535 secNumberFinal = fvect->size();
536
537 //TEST
538 //G4cout << "ionizationShell=" << ionizationShell<< G4endl;
539 //G4cout << "bindingEnergy=" << bindingEnergy/eV<< G4endl;
540
541 if(secNumberFinal > secNumberInit)
542 {
543 for (size_t i=secNumberInit; i<secNumberFinal; ++i)
544 {
545 //Check if there is enough residual energy
546 if (bindingEnergy >= ((*fvect)[i])->GetKineticEnergy())
547 {
548 //Ok, this is a valid secondary: keep it
549 bindingEnergy -= ((*fvect)[i])->GetKineticEnergy();
550 //G4cout << "--deex nrj=" << ((*fvect)[i])->GetKineticEnergy()/eV
551 //<< G4endl;
552 }
553 else
554 {
555 //Invalid secondary: not enough energy to create it!
556 //Keep its energy in the local deposit
557 delete (*fvect)[i];
558 (*fvect)[i]=0;
559 }
560 }
561 }
562
563 //TEST
564 //G4cout << "k=" << k/eV<< G4endl;
565 //G4cout << "secondaryKinetic=" << secondaryKinetic/eV<< G4endl;
566 //G4cout << "scatteredEnergy=" << scatteredEnergy/eV<< G4endl;
567 //G4cout << "deposited energy=" << bindingEnergy/eV<< G4endl;
568 //
569
570 }
571
572 //This should never happen
573 if(bindingEnergy < 0.0)
574 G4Exception("G4DNABornIonisatioModel1::SampleSecondaries()",
575 "em2050",FatalException,"Negative local energy deposit");
576
577 //bindingEnergy has been decreased
578 //by the amount of energy taken away by deexc. products
579 if (!statCode)
580 {
583 }
584 else
585 {
588 }
589
590 // TEST //////////////////////////
591 // if (secondaryKinetic<0) abort();
592 // if (scatteredEnergy<0) abort();
593 // if (k-scatteredEnergy-secondaryKinetic-deexSecEnergy<0) abort();
594 // if (k-scatteredEnergy<0) abort();
596
597 const G4Track * theIncomingTrack = fParticleChangeForGamma->GetCurrentTrack();
599 ionizationShell,
600 theIncomingTrack);
601 }
602}
603
604//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
605
607 G4double k,
608 G4int shell)
609{
610 // G4cout << "*** SLOW computation for " << " " << particleDefinition->GetParticleName() << G4endl;
611
612 if (particleDefinition == G4Electron::ElectronDefinition())
613 {
614 G4double maximumEnergyTransfer = 0.;
615 if ((k + waterStructure.IonisationEnergy(shell)) / 2. > k)
616 maximumEnergyTransfer = k;
617 else
618 maximumEnergyTransfer = (k + waterStructure.IonisationEnergy(shell)) / 2.;
619
620 // SI : original method
621 /*
622 G4double crossSectionMaximum = 0.;
623 for(G4double value=waterStructure.IonisationEnergy(shell); value<=maximumEnergyTransfer; value+=0.1*eV)
624 {
625 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
626 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
627 }
628 */
629
630 // SI : alternative method
631 G4double crossSectionMaximum = 0.;
632
633 G4double minEnergy = waterStructure.IonisationEnergy(shell);
634 G4double maxEnergy = maximumEnergyTransfer;
635 G4int nEnergySteps = 50;
636
637 G4double value(minEnergy);
638 G4double stpEnergy(std::pow(maxEnergy / value,
639 1. / static_cast<G4double>(nEnergySteps - 1)));
640 G4int step(nEnergySteps);
641 while (step > 0)
642 {
643 step--;
644 G4double differentialCrossSection =
645 DifferentialCrossSection(particleDefinition,
646 k / eV,
647 value / eV,
648 shell);
649 if (differentialCrossSection >= crossSectionMaximum)
650 crossSectionMaximum = differentialCrossSection;
651 value *= stpEnergy;
652 }
653 //
654
655 G4double secondaryElectronKineticEnergy = 0.;
656 do
657 {
658 secondaryElectronKineticEnergy = G4UniformRand()* (maximumEnergyTransfer-waterStructure.IonisationEnergy(shell));
659 } while(G4UniformRand()*crossSectionMaximum >
660 DifferentialCrossSection(particleDefinition, k/eV,
661 (secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
662
663 return secondaryElectronKineticEnergy;
664
665 }
666
667 else if (particleDefinition == G4Proton::ProtonDefinition())
668 {
669 G4double maximumKineticEnergyTransfer = 4.
671
672 G4double crossSectionMaximum = 0.;
673 for (G4double value = waterStructure.IonisationEnergy(shell);
674 value <= 4. * waterStructure.IonisationEnergy(shell); value += 0.1 * eV)
675 {
676 G4double differentialCrossSection =
677 DifferentialCrossSection(particleDefinition,
678 k / eV,
679 value / eV,
680 shell);
681 if (differentialCrossSection >= crossSectionMaximum)
682 crossSectionMaximum = differentialCrossSection;
683 }
684
685 G4double secondaryElectronKineticEnergy = 0.;
686 do
687 {
688 secondaryElectronKineticEnergy = G4UniformRand()* maximumKineticEnergyTransfer;
689 } while(G4UniformRand()*crossSectionMaximum >=
690 DifferentialCrossSection(particleDefinition, k/eV,
691 (secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
692
693 return secondaryElectronKineticEnergy;
694 }
695
696 return 0;
697}
698
699//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
700
701// The following section is not used anymore but is kept for memory
702// GetAngularDistribution()->SampleDirectionForShell is used instead
703
704/*
705 void G4DNABornIonisationModel1::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition,
706 G4double k,
707 G4double secKinetic,
708 G4double & cosTheta,
709 G4double & phi )
710 {
711 if (particleDefinition == G4Electron::ElectronDefinition())
712 {
713 phi = twopi * G4UniformRand();
714 if (secKinetic < 50.*eV) cosTheta = (2.*G4UniformRand())-1.;
715 else if (secKinetic <= 200.*eV)
716 {
717 if (G4UniformRand() <= 0.1) cosTheta = (2.*G4UniformRand())-1.;
718 else cosTheta = G4UniformRand()*(std::sqrt(2.)/2);
719 }
720 else
721 {
722 G4double sin2O = (1.-secKinetic/k) / (1.+secKinetic/(2.*electron_mass_c2));
723 cosTheta = std::sqrt(1.-sin2O);
724 }
725 }
726
727 else if (particleDefinition == G4Proton::ProtonDefinition())
728 {
729 G4double maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k;
730 phi = twopi * G4UniformRand();
731
732 // cosTheta = std::sqrt(secKinetic / maxSecKinetic);
733
734 // Restriction below 100 eV from Emfietzoglou (2000)
735
736 if (secKinetic>100*eV) cosTheta = std::sqrt(secKinetic / maxSecKinetic);
737 else cosTheta = (2.*G4UniformRand())-1.;
738
739 }
740 }
741 */
742
743//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
745 G4double k,
746 G4double energyTransfer,
747 G4int ionizationLevelIndex)
748{
749 G4double sigma = 0.;
750
751 if (energyTransfer >= waterStructure.IonisationEnergy(ionizationLevelIndex)/eV)
752 {
753 G4double valueT1 = 0;
754 G4double valueT2 = 0;
755 G4double valueE21 = 0;
756 G4double valueE22 = 0;
757 G4double valueE12 = 0;
758 G4double valueE11 = 0;
759
760 G4double xs11 = 0;
761 G4double xs12 = 0;
762 G4double xs21 = 0;
763 G4double xs22 = 0;
764
765 if (particleDefinition == G4Electron::ElectronDefinition())
766 {
767
768 // Protection against out of boundary access - electron case : 1 MeV
769 if (k==eTdummyVec.back()) k=k*(1.-1e-12);
770 //
771
772 // k should be in eV and energy transfer eV also
773
774 std::vector<G4double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),
775 eTdummyVec.end(),
776 k);
777
778 std::vector<G4double>::iterator t1 = t2 - 1;
779
780 // SI : the following condition avoids situations where energyTransfer >last vector element
781 if (energyTransfer <= eVecm[(*t1)].back()
782 && energyTransfer <= eVecm[(*t2)].back())
783 {
784 std::vector<G4double>::iterator e12 =
785 std::upper_bound(eVecm[(*t1)].begin(),
786 eVecm[(*t1)].end(),
787 energyTransfer);
788 std::vector<G4double>::iterator e11 = e12 - 1;
789
790 std::vector<G4double>::iterator e22 =
791 std::upper_bound(eVecm[(*t2)].begin(),
792 eVecm[(*t2)].end(),
793 energyTransfer);
794 std::vector<G4double>::iterator e21 = e22 - 1;
795
796 valueT1 = *t1;
797 valueT2 = *t2;
798 valueE21 = *e21;
799 valueE22 = *e22;
800 valueE12 = *e12;
801 valueE11 = *e11;
802
803 xs11 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
804 xs12 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
805 xs21 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
806 xs22 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
807
808 }
809
810 }
811
812 if (particleDefinition == G4Proton::ProtonDefinition())
813 {
814 // Protection against out of boundary access - proton case : 100 MeV
815 if (k==pTdummyVec.back()) k=k*(1.-1e-12);
816 //
817
818 // k should be in eV and energy transfer eV also
819 std::vector<G4double>::iterator t2 = std::upper_bound(pTdummyVec.begin(),
820 pTdummyVec.end(),
821 k);
822 std::vector<G4double>::iterator t1 = t2 - 1;
823
824 std::vector<G4double>::iterator e12 = std::upper_bound(pVecm[(*t1)].begin(),
825 pVecm[(*t1)].end(),
826 energyTransfer);
827 std::vector<G4double>::iterator e11 = e12 - 1;
828
829 std::vector<G4double>::iterator e22 = std::upper_bound(pVecm[(*t2)].begin(),
830 pVecm[(*t2)].end(),
831 energyTransfer);
832 std::vector<G4double>::iterator e21 = e22 - 1;
833
834 valueT1 = *t1;
835 valueT2 = *t2;
836 valueE21 = *e21;
837 valueE22 = *e22;
838 valueE12 = *e12;
839 valueE11 = *e11;
840
841 xs11 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
842 xs12 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
843 xs21 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
844 xs22 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
845
846 }
847
848 G4double xsProduct = xs11 * xs12 * xs21 * xs22;
849 if (xsProduct != 0.)
850 {
851 sigma = QuadInterpolator(valueE11,
852 valueE12,
853 valueE21,
854 valueE22,
855 xs11,
856 xs12,
857 xs21,
858 xs22,
859 valueT1,
860 valueT2,
861 k,
862 energyTransfer);
863 }
864 }
865
866 return sigma;
867}
868
869//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
870
872 G4double e2,
873 G4double e,
874 G4double xs1,
875 G4double xs2)
876{
877 G4double value = 0.;
878
879 // Log-log interpolation by default
880
881 if (e1 != 0 && e2 != 0 && (std::log10(e2) - std::log10(e1)) != 0
882 && !fasterCode)
883 {
884 G4double a = (std::log10(xs2) - std::log10(xs1))
885 / (std::log10(e2) - std::log10(e1));
886 G4double b = std::log10(xs2) - a * std::log10(e2);
887 G4double sigma = a * std::log10(e) + b;
888 value = (std::pow(10., sigma));
889 }
890
891 // Switch to lin-lin interpolation
892 /*
893 if ((e2-e1)!=0)
894 {
895 G4double d1 = xs1;
896 G4double d2 = xs2;
897 value = (d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
898 }
899 */
900
901 // Switch to log-lin interpolation for faster code
902 if ((e2 - e1) != 0 && xs1 != 0 && xs2 != 0 && fasterCode)
903 {
904 G4double d1 = std::log10(xs1);
905 G4double d2 = std::log10(xs2);
906 value = std::pow(10., (d1 + (d2 - d1) * (e - e1) / (e2 - e1)));
907 }
908
909 // Switch to lin-lin interpolation for faster code
910 // in case one of xs1 or xs2 (=cum proba) value is zero
911
912 if ((e2 - e1) != 0 && (xs1 == 0 || xs2 == 0) && fasterCode)
913 {
914 G4double d1 = xs1;
915 G4double d2 = xs2;
916 value = (d1 + (d2 - d1) * (e - e1) / (e2 - e1));
917 }
918
919 /*
920 G4cout
921 << e1 << " "
922 << e2 << " "
923 << e << " "
924 << xs1 << " "
925 << xs2 << " "
926 << value
927 << G4endl;
928 */
929
930 return value;
931}
932
933//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
934
936 G4double e12,
937 G4double e21,
938 G4double e22,
939 G4double xs11,
940 G4double xs12,
941 G4double xs21,
942 G4double xs22,
943 G4double t1,
944 G4double t2,
945 G4double t,
946 G4double e)
947{
948 G4double interpolatedvalue1 = Interpolate(e11, e12, e, xs11, xs12);
949 G4double interpolatedvalue2 = Interpolate(e21, e22, e, xs21, xs22);
950 G4double value = Interpolate(t1,
951 t2,
952 t,
953 interpolatedvalue1,
954 interpolatedvalue2);
955
956 return value;
957}
958
960 G4int level,
961 const G4ParticleDefinition* particle,
962 G4double kineticEnergy)
963{
964 std::map<G4String, G4DNACrossSectionDataSet*, std::less<G4String> >::iterator pos;
965 pos = tableData.find(particle->GetParticleName());
966
967 if (pos != tableData.end())
968 {
969 G4DNACrossSectionDataSet* table = pos->second;
970 return table->GetComponent(level)->FindValue(kineticEnergy);
971 }
972
973 return 0;
974}
975
976//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
977
979 const G4String& particle)
980{
981 G4int level = 0;
982
983 std::map<G4String, G4DNACrossSectionDataSet*, std::less<G4String> >::iterator pos;
984 pos = tableData.find(particle);
985
986 if (pos != tableData.end())
987 {
988 G4DNACrossSectionDataSet* table = pos->second;
989
990 if (table != 0)
991 {
992 G4double* valuesBuffer = new G4double[table->NumberOfComponents()];
993 const size_t n(table->NumberOfComponents());
994 size_t i(n);
995 G4double value = 0.;
996
997 while (i > 0)
998 {
999 i--;
1000 valuesBuffer[i] = table->GetComponent(i)->FindValue(k);
1001 value += valuesBuffer[i];
1002 }
1003
1004 value *= G4UniformRand();
1005
1006 i = n;
1007
1008 while (i > 0)
1009 {
1010 i--;
1011
1012 if (valuesBuffer[i] > value)
1013 {
1014 delete[] valuesBuffer;
1015 return i;
1016 }
1017 value -= valuesBuffer[i];
1018 }
1019
1020 if (valuesBuffer)
1021 delete[] valuesBuffer;
1022
1023 }
1024 } else
1025 {
1026 G4Exception("G4DNABornIonisationModel1::RandomSelect",
1027 "em0002",
1029 "Model not applicable to particle type.");
1030 }
1031
1032 return level;
1033}
1034
1035//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1036
1038 G4double k,
1039 G4int shell)
1040{
1041 //G4cout << "*** FAST computation for " << " " << particleDefinition->GetParticleName() << G4endl;
1042
1043 G4double secondaryElectronKineticEnergy = 0.;
1044
1045 G4double random = G4UniformRand();
1046
1047 secondaryElectronKineticEnergy = TransferedEnergy(particleDefinition,
1048 k / eV,
1049 shell,
1050 random) * eV
1052
1053 //G4cout << RandomTransferedEnergy(particleDefinition, k/eV, shell) << G4endl;
1054
1055 if (secondaryElectronKineticEnergy < 0.)
1056 return 0.;
1057 //
1058
1059 return secondaryElectronKineticEnergy;
1060}
1061
1062//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1063
1065 G4double k,
1066 G4int ionizationLevelIndex,
1067 G4double random)
1068{
1069 G4double nrj = 0.;
1070
1071 G4double valueK1 = 0;
1072 G4double valueK2 = 0;
1073 G4double valuePROB21 = 0;
1074 G4double valuePROB22 = 0;
1075 G4double valuePROB12 = 0;
1076 G4double valuePROB11 = 0;
1077
1078 G4double nrjTransf11 = 0;
1079 G4double nrjTransf12 = 0;
1080 G4double nrjTransf21 = 0;
1081 G4double nrjTransf22 = 0;
1082
1083 if (particleDefinition == G4Electron::ElectronDefinition())
1084 {
1085 // Protection against out of boundary access - electron case : 1 MeV
1086 if (k==eTdummyVec.back()) k=k*(1.-1e-12);
1087 //
1088
1089 // k should be in eV
1090 std::vector<G4double>::iterator k2 = std::upper_bound(eTdummyVec.begin(),
1091 eTdummyVec.end(),
1092 k);
1093 std::vector<G4double>::iterator k1 = k2 - 1;
1094
1095 /*
1096 G4cout << "----> k=" << k
1097 << " " << *k1
1098 << " " << *k2
1099 << " " << random
1100 << " " << ionizationLevelIndex
1101 << " " << eProbaShellMap[ionizationLevelIndex][(*k1)].back()
1102 << " " << eProbaShellMap[ionizationLevelIndex][(*k2)].back()
1103 << G4endl;
1104 */
1105
1106 // SI : the following condition avoids situations where random >last vector element
1107 if (random <= eProbaShellMap[ionizationLevelIndex][(*k1)].back()
1108 && random <= eProbaShellMap[ionizationLevelIndex][(*k2)].back())
1109 {
1110 std::vector<G4double>::iterator prob12 =
1111 std::upper_bound(eProbaShellMap[ionizationLevelIndex][(*k1)].begin(),
1112 eProbaShellMap[ionizationLevelIndex][(*k1)].end(),
1113 random);
1114
1115 std::vector<G4double>::iterator prob11 = prob12 - 1;
1116
1117 std::vector<G4double>::iterator prob22 =
1118 std::upper_bound(eProbaShellMap[ionizationLevelIndex][(*k2)].begin(),
1119 eProbaShellMap[ionizationLevelIndex][(*k2)].end(),
1120 random);
1121
1122 std::vector<G4double>::iterator prob21 = prob22 - 1;
1123
1124 valueK1 = *k1;
1125 valueK2 = *k2;
1126 valuePROB21 = *prob21;
1127 valuePROB22 = *prob22;
1128 valuePROB12 = *prob12;
1129 valuePROB11 = *prob11;
1130
1131 /*
1132 G4cout << " " << random << " " << valuePROB11 << " "
1133 << valuePROB12 << " " << valuePROB21 << " " << valuePROB22 << G4endl;
1134 */
1135
1136 nrjTransf11 = eNrjTransfData[ionizationLevelIndex][valueK1][valuePROB11];
1137 nrjTransf12 = eNrjTransfData[ionizationLevelIndex][valueK1][valuePROB12];
1138 nrjTransf21 = eNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21];
1139 nrjTransf22 = eNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22];
1140
1141 /*
1142 G4cout << " " << ionizationLevelIndex << " "
1143 << random << " " <<valueK1 << " " << valueK2 << G4endl;
1144
1145 G4cout << " " << random << " " << nrjTransf11 << " "
1146 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl;
1147 */
1148
1149 }
1150
1151 // Avoids cases where cum xs is zero for k1 and is not for k2 (with always k1<k2)
1152 if (random > eProbaShellMap[ionizationLevelIndex][(*k1)].back())
1153 {
1154 std::vector<G4double>::iterator prob22 =
1155 std::upper_bound(eProbaShellMap[ionizationLevelIndex][(*k2)].begin(),
1156 eProbaShellMap[ionizationLevelIndex][(*k2)].end(),
1157 random);
1158
1159 std::vector<G4double>::iterator prob21 = prob22 - 1;
1160
1161 valueK1 = *k1;
1162 valueK2 = *k2;
1163 valuePROB21 = *prob21;
1164 valuePROB22 = *prob22;
1165
1166 //G4cout << " " << random << " " << valuePROB21 << " " << valuePROB22 << G4endl;
1167
1168 nrjTransf21 = eNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21];
1169 nrjTransf22 = eNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22];
1170
1171 G4double interpolatedvalue2 = Interpolate(valuePROB21,
1172 valuePROB22,
1173 random,
1174 nrjTransf21,
1175 nrjTransf22);
1176
1177 // zeros are explicitly set
1178
1179 G4double value = Interpolate(valueK1, valueK2, k, 0., interpolatedvalue2);
1180
1181 /*
1182 G4cout << " " << ionizationLevelIndex << " "
1183 << random << " " <<valueK1 << " " << valueK2 << G4endl;
1184
1185 G4cout << " " << random << " " << nrjTransf11 << " "
1186 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl;
1187
1188 G4cout << "ici" << " " << value << G4endl;
1189 */
1190
1191 return value;
1192 }
1193 }
1194 //
1195 else if (particleDefinition == G4Proton::ProtonDefinition())
1196 {
1197 // Protection against out of boundary access - proton case : 100 MeV
1198 if (k==pTdummyVec.back()) k=k*(1.-1e-12);
1199 //
1200
1201 // k should be in eV
1202
1203 std::vector<G4double>::iterator k2 = std::upper_bound(pTdummyVec.begin(),
1204 pTdummyVec.end(),
1205 k);
1206
1207 std::vector<G4double>::iterator k1 = k2 - 1;
1208
1209 /*
1210 G4cout << "----> k=" << k
1211 << " " << *k1
1212 << " " << *k2
1213 << " " << random
1214 << " " << ionizationLevelIndex
1215 << " " << pProbaShellMap[ionizationLevelIndex][(*k1)].back()
1216 << " " << pProbaShellMap[ionizationLevelIndex][(*k2)].back()
1217 << G4endl;
1218 */
1219
1220 // SI : the following condition avoids situations where random > last vector element,
1221 // for eg. when the last element is zero
1222 if (random <= pProbaShellMap[ionizationLevelIndex][(*k1)].back()
1223 && random <= pProbaShellMap[ionizationLevelIndex][(*k2)].back())
1224 {
1225 std::vector<G4double>::iterator prob12 =
1226 std::upper_bound(pProbaShellMap[ionizationLevelIndex][(*k1)].begin(),
1227 pProbaShellMap[ionizationLevelIndex][(*k1)].end(),
1228 random);
1229
1230 std::vector<G4double>::iterator prob11 = prob12 - 1;
1231
1232 std::vector<G4double>::iterator prob22 =
1233 std::upper_bound(pProbaShellMap[ionizationLevelIndex][(*k2)].begin(),
1234 pProbaShellMap[ionizationLevelIndex][(*k2)].end(),
1235 random);
1236
1237 std::vector<G4double>::iterator prob21 = prob22 - 1;
1238
1239 valueK1 = *k1;
1240 valueK2 = *k2;
1241 valuePROB21 = *prob21;
1242 valuePROB22 = *prob22;
1243 valuePROB12 = *prob12;
1244 valuePROB11 = *prob11;
1245
1246 /*
1247 G4cout << " " << random << " " << valuePROB11 << " "
1248 << valuePROB12 << " " << valuePROB21 << " " << valuePROB22 << G4endl;
1249 */
1250
1251 nrjTransf11 = pNrjTransfData[ionizationLevelIndex][valueK1][valuePROB11];
1252 nrjTransf12 = pNrjTransfData[ionizationLevelIndex][valueK1][valuePROB12];
1253 nrjTransf21 = pNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21];
1254 nrjTransf22 = pNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22];
1255
1256 /*
1257 G4cout << " " << ionizationLevelIndex << " "
1258 << random << " " <<valueK1 << " " << valueK2 << G4endl;
1259
1260 G4cout << " " << random << " " << nrjTransf11 << " "
1261 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl;
1262 */
1263 }
1264
1265 // Avoids cases where cum xs is zero for k1 and is not for k2 (with always k1<k2)
1266
1267 if (random > pProbaShellMap[ionizationLevelIndex][(*k1)].back())
1268 {
1269 std::vector<G4double>::iterator prob22 =
1270 std::upper_bound(pProbaShellMap[ionizationLevelIndex][(*k2)].begin(),
1271 pProbaShellMap[ionizationLevelIndex][(*k2)].end(),
1272 random);
1273
1274 std::vector<G4double>::iterator prob21 = prob22 - 1;
1275
1276 valueK1 = *k1;
1277 valueK2 = *k2;
1278 valuePROB21 = *prob21;
1279 valuePROB22 = *prob22;
1280
1281 //G4cout << " " << random << " " << valuePROB21 << " " << valuePROB22 << G4endl;
1282
1283 nrjTransf21 = pNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21];
1284 nrjTransf22 = pNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22];
1285
1286 G4double interpolatedvalue2 = Interpolate(valuePROB21,
1287 valuePROB22,
1288 random,
1289 nrjTransf21,
1290 nrjTransf22);
1291
1292 // zeros are explicitly set
1293
1294 G4double value = Interpolate(valueK1, valueK2, k, 0., interpolatedvalue2);
1295
1296 /*
1297 G4cout << " " << ionizationLevelIndex << " "
1298 << random << " " <<valueK1 << " " << valueK2 << G4endl;
1299
1300 G4cout << " " << random << " " << nrjTransf11 << " "
1301 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl;
1302
1303 G4cout << "ici" << " " << value << G4endl;
1304 */
1305
1306 return value;
1307 }
1308 }
1309 // End electron and proton cases
1310
1311 G4double nrjTransfProduct = nrjTransf11 * nrjTransf12 * nrjTransf21
1312 * nrjTransf22;
1313 //G4cout << "nrjTransfProduct=" << nrjTransfProduct << G4endl;
1314
1315 if (nrjTransfProduct != 0.)
1316 {
1317 nrj = QuadInterpolator(valuePROB11,
1318 valuePROB12,
1319 valuePROB21,
1320 valuePROB22,
1321 nrjTransf11,
1322 nrjTransf12,
1323 nrjTransf21,
1324 nrjTransf22,
1325 valueK1,
1326 valueK2,
1327 k,
1328 random);
1329 }
1330 //G4cout << nrj << endl;
1331
1332 return nrj;
1333}
G4AtomicShellEnumerator
static const G4double e1[44]
static const G4double e2[44]
@ eIonizedMolecule
G4double B(G4double temperature)
static const G4double d1
static const G4double pos
static const G4double d2
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
static constexpr double m
Definition: G4SIunits.hh:109
static constexpr double keV
Definition: G4SIunits.hh:202
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double MeV
Definition: G4SIunits.hh:200
static constexpr double cm
Definition: G4SIunits.hh:99
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
Hep3Vector unit() const
double x() const
double y() const
void set(double x, double y, double z)
std::map< G4String, G4double, std::less< G4String > > highEnergyLimit
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &= *(new G4DataVector()))
G4VAtomDeexcitation * fAtomDeexcitation
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
G4double QuadInterpolator(G4double e11, G4double e12, G4double e21, G4double e22, G4double x11, G4double x12, G4double x21, G4double x22, G4double t1, G4double t2, G4double t, G4double e)
std::map< G4String, G4double, std::less< G4String > > lowEnergyLimit
virtual G4double GetPartialCrossSection(const G4Material *, G4int, const G4ParticleDefinition *, G4double)
const std::vector< G4double > * fpMolWaterDensity
std::vector< G4double > eTdummyVec
G4double DifferentialCrossSection(G4ParticleDefinition *aParticleDefinition, G4double k, G4double energyTransfer, G4int shell)
std::vector< G4double > pTdummyVec
G4double RandomizeEjectedElectronEnergy(G4ParticleDefinition *aParticleDefinition, G4double incomingParticleEnergy, G4int shell)
G4double Interpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
G4DNAWaterIonisationStructure waterStructure
G4double RandomizeEjectedElectronEnergyFromCumulatedDcs(G4ParticleDefinition *aParticleDefinition, G4double incomingParticleEnergy, G4int shell)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4DNABornIonisationModel1(const G4ParticleDefinition *p=0, const G4String &nam="DNABornIonisationModel")
G4double TransferedEnergy(G4ParticleDefinition *aParticleDefinition, G4double incomingParticleEnergy, G4int shell, G4double random)
G4ParticleChangeForGamma * fParticleChangeForGamma
G4int RandomSelect(G4double energy, const G4String &particle)
static G4DNAChemistryManager * Instance()
void CreateWaterMolecule(ElectronicModification, G4int, const G4Track *)
virtual G4double FindValue(G4double e, G4int componentId=0) const
virtual size_t NumberOfComponents(void) const
virtual const G4VEMDataSet * GetComponent(G4int componentId) const
virtual G4bool LoadData(const G4String &argFileName)
static G4DNAMolecularMaterial * Instance()
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:88
static G4Electron * Electron()
Definition: G4Electron.cc:93
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
const G4Material * GetMaterial() const
static G4Material * GetMaterial(const G4String &name, G4bool warning=true)
Definition: G4Material.cc:686
const G4Track * GetCurrentTrack() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
const G4String & GetParticleName() const
static G4Proton * ProtonDefinition()
Definition: G4Proton.cc:87
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
virtual G4ThreeVector & SampleDirectionForShell(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, G4int shellID, const G4Material *)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:767
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:621
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:123
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:662
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:655
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:774
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:823
void SetAngularDistribution(G4VEmAngularDistribution *)
Definition: G4VEmModel.hh:628
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
G4double bindingEnergy(G4int A, G4int Z)
string material
Definition: eplot.py:19
float electron_mass_c2
Definition: hepunit.py:273
float proton_mass_c2
Definition: hepunit.py:274