Geant4-11
G4ChipsHyperonInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28//
29// ****************************************************************************************
30// Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
31// Hyperon-nuclear interactions. Original author: M. Kossov
32// -------------------------------------------------------------------------------------
33//
34
36#include "G4SystemOfUnits.hh"
37#include "G4DynamicParticle.hh"
39#include "G4Lambda.hh"
40#include "G4SigmaPlus.hh"
41#include "G4SigmaMinus.hh"
42#include "G4SigmaZero.hh"
43#include "G4XiMinus.hh"
44#include "G4XiZero.hh"
45#include "G4OmegaMinus.hh"
46#include "G4Log.hh"
47#include "G4Exp.hh"
48
49// factory
51//
53
55{
56 // Initialization of the
57 lastLEN=0; // Pointer to the lastArray of LowEn CS
58 lastHEN=0; // Pointer to the lastArray of HighEn CS
59 lastN=0; // The last N of calculated nucleus
60 lastZ=0; // The last Z of calculated nucleus
61 lastP=0.; // Last used in cross section Momentum
62 lastTH=0.; // Last threshold momentum
63 lastCS=0.; // Last value of the Cross Section
64 lastI=0; // The last position in the DAMDB
65 LEN = new std::vector<G4double*>;
66 HEN = new std::vector<G4double*>;
67}
68
70{
71 G4int lens=LEN->size();
72 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
73 delete LEN;
74
75 G4int hens=HEN->size();
76 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
77 delete HEN;
78}
79
81{
82 outFile << "G4ChipsHyperonInelasticXS provides the inelastic cross\n"
83 << "section for hyperon nucleus scattering as a function of incident\n"
84 << "momentum. The cross section is calculated using M. Kossov's\n"
85 << "CHIPS parameterization of cross section data.\n";
86}
87
89 const G4Element*,
90 const G4Material*)
91{
92 /*
93 const G4ParticleDefinition* particle = Pt->GetDefinition();
94 if (particle == G4Lambda::Lambda())
95 {
96 return true;
97 }
98 else if(particle == G4SigmaPlus::SigmaPlus())
99 {
100 return true;
101 }
102 else if(particle == G4SigmaMinus::SigmaMinus())
103 {
104 return true;
105 }
106 else if(particle == G4SigmaZero::SigmaZero())
107 {
108 return true;
109 }
110 else if(particle == G4XiMinus::XiMinus())
111 {
112 return true;
113 }
114 else if(particle == G4XiZero::XiZero())
115 {
116 return true;
117 }
118 else if(particle == G4OmegaMinus::OmegaMinus())
119 {
120 return true;
121 }
122 */
123 return true;
124}
125
126// The main member function giving the collision cross section (P is in IU, CS is in mb)
127// Make pMom in independent units ! (Now it is MeV)
129 const G4Isotope*,
130 const G4Element*,
131 const G4Material*)
132{
133 G4double pMom=Pt->GetTotalMomentum();
134 G4int tgN = A - tgZ;
135 G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
136
137 return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
138}
139
141{
142
143 G4bool in=false; // By default the isotope must be found in the AMDB
144 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
145 {
146 in = false; // By default the isotope haven't be found in AMDB
147 lastP = 0.; // New momentum history (nothing to compare with)
148 lastN = tgN; // The last N of the calculated nucleus
149 lastZ = tgZ; // The last Z of the calculated nucleus
150 lastI = colN.size(); // Size of the Associative Memory DB in the heap
151 j = 0; // A#0f records found in DB for this projectile
152
153 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
154 {
155 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
156 {
157 lastI=i; // Remember the index for future fast/last use
158 lastTH =colTH[i]; // The last THreshold (A-dependent)
159
160 if(pMom<=lastTH)
161 {
162 return 0.; // Energy is below the Threshold value
163 }
164 lastP =colP [i]; // Last Momentum (A-dependent)
165 lastCS =colCS[i]; // Last CrossSect (A-dependent)
166 in = true; // This is the case when the isotop is found in DB
167 // Momentum pMom is in IU ! @@ Units
168 lastCS=CalculateCrossSection(-1,j,PDG,lastZ,lastN,pMom); // read & update
169
170 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
171 {
172 lastCS=0.;
173 lastTH=pMom;
174 }
175 break; // Go out of the LOOP
176 }
177 j++; // Increment a#0f records found in DB
178 }
179 if(!in) // This isotope has not been calculated previously
180 {
182 lastCS=CalculateCrossSection(0,j,PDG,lastZ,lastN,pMom); //calculate & create
183 //if(lastCS>0.) // It means that the AMBD was initialized
184 //{
185
186 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
187 colN.push_back(tgN);
188 colZ.push_back(tgZ);
189 colP.push_back(pMom);
190 colTH.push_back(lastTH);
191 colCS.push_back(lastCS);
192 //} // M.K. Presence of H1 with high threshold breaks the syncronization
193 return lastCS*millibarn;
194 } // End of creation of the new set of parameters
195 else
196 {
197 colP[lastI]=pMom;
199 }
200 } // End of parameters udate
201 else if(pMom<=lastTH)
202 {
203 return 0.; // Momentum is below the Threshold Value -> CS=0
204 }
205 else // It is the last used -> use the current tables
206 {
207 lastCS=CalculateCrossSection(1,j,PDG,lastZ,lastN,pMom); // Only read and UpdateDB
208 lastP=pMom;
209 }
210 return lastCS*millibarn;
211}
212
213// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
215 G4int, G4int targZ, G4int targN, G4double Momentum)
216{
217 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
218 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
219 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
220 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
221 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
222 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
223 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
224 static const G4int nH=224; // A#of HEN points in lnE
225 static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
226 static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
227 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
228 static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
229 G4double sigma=0.;
230 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
231 //G4double A=targN+targZ; // A of the target
232 if(F<=0) // This isotope was not the last used isotop
233 {
234 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
235 {
236 G4int sync=LEN->size();
237 if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
238 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
239 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
240 }
241 else // This isotope wasn't calculated before => CREATE
242 {
243 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
244 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
245 // --- Instead of making a separate function ---
246 G4double P=THmiG; // Table threshold in GeV/c
247 for(G4int k=0; k<nL; k++)
248 {
249 lastLEN[k] = CrossSectionLin(targZ, targN, P);
250 P+=dPG;
251 }
252 G4double lP=milPG;
253 for(G4int n=0; n<nH; n++)
254 {
255 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
256 lP+=dlP;
257 }
258 // --- End of possible separate function
259 // *** The synchronization check ***
260 G4int sync=LEN->size();
261 if(sync!=I)
262 {
263 G4cerr<<"***G4QHyperNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
264 <<", N="<<targN<<", F="<<F<<G4endl;
265 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
266 }
267 LEN->push_back(lastLEN); // remember the Low Energy Table
268 HEN->push_back(lastHEN); // remember the High Energy Table
269 } // End of creation of the new set of parameters
270 } // End of parameters udate
271 // =--------------------------= NOW the Magic Formula =------------------------------=
272 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
273 else if (Momentum<Pmin) // High Energy region
274 {
275 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
276 }
277 else if (Momentum<Pmax) // High Energy region
278 {
279 G4double lP=G4Log(Momentum);
280 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
281 }
282 else // UHE region (calculation, not frequent)
283 {
284 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
285 sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
286 }
287 if(sigma<0.) return 0.;
288 return sigma;
289}
290
291// Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
293{
294 G4double lP=G4Log(P);
295 return CrossSectionFormula(tZ, tN, P, lP);
296}
297
298// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
300{
301 G4double P=G4Exp(lP);
302 return CrossSectionFormula(tZ, tN, P, lP);
303}
304// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
306 G4double P, G4double lP)
307{
308 G4double sigma=0.;
309
310 //AR-24Apr2018 Switch to allow transuranic elements
311 const G4bool isHeavyElementAllowed = true;
312
313 if(tZ==1 && !tN) // Hyperon-P interaction from G4QuasiElastRatios
314 {
315 G4double ld=lP-3.5;
316 G4double ld2=ld*ld;
317 G4double p2=P*P;
318 G4double p4=p2*p2;
319 G4double sp=std::sqrt(P);
320 G4double El=(.0557*ld2+6.72+99./p2)/(1.+2./sp+2./p4);
321 G4double To=(.3*ld2+38.2+900./sp)/(1.+27./sp+3./p4);
322 sigma=To-El;
323 }
324 else if((tZ<97 && tN<152) || isHeavyElementAllowed) // General solution
325 {
326 G4double d=lP-4.2;
327 G4double p2=P*P;
328 G4double p4=p2*p2;
329 G4double sp=std::sqrt(P);
330 G4double ssp=std::sqrt(sp);
331 G4double a=tN+tZ; // A of the target
332 G4double al=G4Log(a);
333 G4double sa=std::sqrt(a);
334 G4double a2=a*a;
335 G4double a2s=a2*sa;
336 G4double a4=a2*a2;
337 G4double a8=a4*a4;
338 G4double c=(170.+3600./a2s)/(1.+65./a2s);
339 G4double gg=42.*(G4Exp(al*0.8)+4.E-8*a4)/(1.+28./a)/(1.+5.E-5*a2);
340 G4double e=390.; // Defolt values for deutrons
341 G4double r=0.27;
342 G4double h=2.E-7;
343 G4double t=0.3;
344 if(tZ>1 || tN>1)
345 {
346 e=380.+18.*a2/(1.+a2/60.)/(1.+2.E-19*a8);
347 r=0.15;
348 h=1.E-8*a2/(1.+a2/17.)/(1.+3.E-20*a8);
349 t=(.2+.00056*a2)/(1.+a2*.0006);
350 }
351 sigma=(c+d*d)/(1.+t/ssp+r/p4)+(gg+e*G4Exp(-6.*P))/(1.+h/p4/p4);
352#ifdef pdebug
353 G4cout<<"G4QHyperonNucCS::CSForm: A="<<a<<",P="<<P<<",CS="<<sigma<<",c="<<c<<",g="<<gg
354 <<",d="<<d<<",r="<<r<<",e="<<e<<",h="<<h<<G4endl;
355#endif
356 }
357 else
358 {
359 G4cerr<<"-Warning-G4QHyperonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
360 sigma=0.;
361 }
362 if(sigma<0.) return 0.;
363 return sigma;
364}
365
367{
368 if(DX<=0. || N<2)
369 {
370 G4cerr<<"***G4ChipsHyperonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
371 return Y[0];
372 }
373
374 G4int N2=N-2;
375 G4double d=(X-X0)/DX;
376 G4int jj=static_cast<int>(d);
377 if (jj<0) jj=0;
378 else if(jj>N2) jj=N2;
379 d-=jj; // excess
380 G4double yi=Y[jj];
381 G4double sigma=yi+(Y[jj+1]-yi)*d;
382
383 return sigma;
384}
G4_DECLARE_XS_FACTORY(G4ChipsHyperonInelasticXS)
G4double Y(G4double density)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
static const G4int nL
static const G4double THmin
static const G4int nH
static constexpr double millibarn
Definition: G4SIunits.hh:86
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4double A[17]
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
G4double CrossSectionLog(G4int targZ, G4int targN, G4double lP)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4double CrossSectionLin(G4int targZ, G4int targN, G4double P)
G4double EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double *Y)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double CrossSectionFormula(G4int targZ, G4int targN, G4double P, G4double lP)
G4double CalculateCrossSection(G4int F, G4int I, G4int PDG, G4int Z, G4int N, G4double Momentum)
std::vector< G4double * > * HEN
virtual void CrossSectionDescription(std::ostream &) const
std::vector< G4double * > * LEN
G4ParticleDefinition * GetDefinition() const
G4double GetTotalMomentum() const
const G4double al
Mysterious coefficient that appears in the wavefunctions.
static double P[]