Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4WilsonAbrasionModel Class Reference

#include <G4WilsonAbrasionModel.hh>

Inheritance diagram for G4WilsonAbrasionModel:
G4HadronicInteraction

Public Member Functions

 G4WilsonAbrasionModel (G4bool useAblation1=false)
 
 G4WilsonAbrasionModel (G4ExcitationHandler *)
 
 ~G4WilsonAbrasionModel ()
 
 G4WilsonAbrasionModel (const G4WilsonAbrasionModel &right)
 
const G4WilsonAbrasionModeloperator= (G4WilsonAbrasionModel &right)
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &, G4Nucleus &)
 
void SetVerboseLevel (G4int)
 
void SetUseAblation (G4bool)
 
G4bool GetUseAblation ()
 
void SetConserveMomentum (G4bool)
 
G4bool GetConserveMomentum ()
 
void SetExcitationHandler (G4ExcitationHandler *)
 
G4ExcitationHandlerGetExcitationHandler ()
 
virtual void ModelDescription (std::ostream &) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
virtual G4int GetVerboseLevel () const
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair
< G4double, G4double
GetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double,
G4double
GetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 77 of file G4WilsonAbrasionModel.hh.

Constructor & Destructor Documentation

G4WilsonAbrasionModel::G4WilsonAbrasionModel ( G4bool  useAblation1 = false)

Definition at line 108 of file G4WilsonAbrasionModel.cc.

References python.hepunit::GeV, G4HadronicInteraction::isBlocked, python.hepunit::MeV, G4ExcitationHandler::SetEvaporation(), G4ExcitationHandler::SetFermiModel(), G4ExcitationHandler::SetMaxAandZForFermiBreakUp(), G4HadronicInteraction::SetMaxEnergy(), G4ExcitationHandler::SetMinEForMultiFrag(), G4HadronicInteraction::SetMinEnergy(), G4ExcitationHandler::SetMultiFragmentation(), G4WilsonAblationModel::SetVerboseLevel(), and G4HadronicInteraction::verboseLevel.

109  :G4HadronicInteraction("G4WilsonAbrasion")
110 {
111  // Send message to stdout to advise that the G4Abrasion model is being used.
112  PrintWelcomeMessage();
113 
114  // Set the default verbose level to 0 - no output.
115  verboseLevel = 0;
116  useAblation = useAblation1;
117 
118  // No de-excitation handler has been supplied - define the default handler.
119 
120  theExcitationHandler = new G4ExcitationHandler;
121  theExcitationHandlerx = new G4ExcitationHandler;
122  if (useAblation)
123  {
124  theAblation = new G4WilsonAblationModel;
125  theAblation->SetVerboseLevel(verboseLevel);
126  theExcitationHandler->SetEvaporation(theAblation);
127  theExcitationHandlerx->SetEvaporation(theAblation);
128  }
129  else
130  {
131  theAblation = NULL;
132  G4Evaporation * theEvaporation = new G4Evaporation;
133  G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
134  G4StatMF * theMF = new G4StatMF;
135  theExcitationHandler->SetEvaporation(theEvaporation);
136  theExcitationHandler->SetFermiModel(theFermiBreakUp);
137  theExcitationHandler->SetMultiFragmentation(theMF);
138  theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
139  theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
140 
141  theEvaporation = new G4Evaporation;
142  theFermiBreakUp = new G4FermiBreakUp;
143  theExcitationHandlerx->SetEvaporation(theEvaporation);
144  theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
145  theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
146  }
147 
148  // Set the minimum and maximum range for the model (despite nomanclature,
149  // this is in energy per nucleon number).
150 
151  SetMinEnergy(70.0*MeV);
152  SetMaxEnergy(10.1*GeV);
153  isBlocked = false;
154 
155  // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
156  // momentum over which the secondary nucleon momentum is sampled.
157 
158  r0sq = 0.0;
159  npK = 5.0;
160  B = 10.0 * MeV;
161  third = 1.0 / 3.0;
162  fradius = 0.99;
163  conserveEnergy = false;
164  conserveMomentum = true;
165 }
void SetMinEForMultiFrag(G4double anE)
void SetMinEnergy(G4double anEnergy)
void SetFermiModel(G4VFermiBreakUp *ptr)
void SetMultiFragmentation(G4VMultiFragmentation *ptr)
G4HadronicInteraction(const G4String &modelName="HadronicModel")
void SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ)
void SetEvaporation(G4VEvaporation *ptr)
void SetMaxEnergy(const G4double anEnergy)
G4WilsonAbrasionModel::G4WilsonAbrasionModel ( G4ExcitationHandler aExcitationHandler)

Definition at line 179 of file G4WilsonAbrasionModel.cc.

References python.hepunit::GeV, G4HadronicInteraction::isBlocked, python.hepunit::MeV, G4ExcitationHandler::SetEvaporation(), G4ExcitationHandler::SetFermiModel(), G4ExcitationHandler::SetMaxAandZForFermiBreakUp(), G4HadronicInteraction::SetMaxEnergy(), G4HadronicInteraction::SetMinEnergy(), and G4HadronicInteraction::verboseLevel.

180 {
181 // Send message to stdout to advise that the G4Abrasion model is being used.
182 
183  PrintWelcomeMessage();
184 
185 // Set the default verbose level to 0 - no output.
186 
187  verboseLevel = 0;
188 
189  theAblation = NULL; //A.R. 26-Jul-2012 Coverity fix.
190  useAblation = false; //A.R. 14-Aug-2012 Coverity fix.
191 
192 //
193 // The user is able to provide the excitation handler as well as an argument
194 // which is provided in this instantiation is used to determine
195 // whether the spectators of the interaction are free following the abrasion.
196 //
197  theExcitationHandler = aExcitationHandler;
198  theExcitationHandlerx = new G4ExcitationHandler;
199  G4Evaporation * theEvaporation = new G4Evaporation;
200  G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
201  theExcitationHandlerx->SetEvaporation(theEvaporation);
202  theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
203  theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
204 //
205 //
206 // Set the minimum and maximum range for the model (despite nomanclature, this
207 // is in energy per nucleon number).
208 //
209  SetMinEnergy(70.0*MeV);
210  SetMaxEnergy(10.1*GeV);
211  isBlocked = false;
212 //
213 //
214 // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
215 // momentum over which the secondary nucleon momentum is sampled.
216 //
217  r0sq = 0.0; //A.R. 14-Aug-2012 Coverity fix.
218  npK = 5.0;
219  B = 10.0 * MeV;
220  third = 1.0 / 3.0;
221  fradius = 0.99;
222  conserveEnergy = false;
223  conserveMomentum = true;
224 }
void SetMinEnergy(G4double anEnergy)
void SetFermiModel(G4VFermiBreakUp *ptr)
void SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ)
void SetEvaporation(G4VEvaporation *ptr)
void SetMaxEnergy(const G4double anEnergy)
G4WilsonAbrasionModel::~G4WilsonAbrasionModel ( )

Definition at line 227 of file G4WilsonAbrasionModel.cc.

228 {
229 //
230 //
231 // The destructor doesn't have to do a great deal!
232 //
233  if (theExcitationHandler) delete theExcitationHandler;
234  if (theExcitationHandlerx) delete theExcitationHandlerx;
235  if (useAblation) delete theAblation;
236 // delete theExcitationHandler;
237 // delete theExcitationHandlerx;
238 }
G4WilsonAbrasionModel::G4WilsonAbrasionModel ( const G4WilsonAbrasionModel right)

Member Function Documentation

G4HadFinalState * G4WilsonAbrasionModel::ApplyYourself ( const G4HadProjectile theTrack,
G4Nucleus theTarget 
)
virtual

Implements G4HadronicInteraction.

Definition at line 241 of file G4WilsonAbrasionModel.cc.

References G4HadFinalState::AddSecondary(), G4Nucleus::AtomicMass(), CLHEP::HepLorentzVector::boost(), G4ExcitationHandler::BreakItUp(), G4HadFinalState::Clear(), G4DynamicParticle::DumpInfo(), python.hepunit::elm_coupling, python.hepunit::eV, G4NuclearAbrasionGeometry::F(), python.hepunit::fermi, CLHEP::HepLorentzVector::findBoostToCM(), G4cout, G4endl, G4Poisson(), G4UniformRand, G4HadProjectile::Get4Momentum(), G4DynamicParticle::Get4Momentum(), G4Fragment::GetA(), G4Nucleus::GetA_asInt(), G4ParticleDefinition::GetBaryonNumber(), G4HadProjectile::GetDefinition(), G4DynamicParticle::GetDefinition(), G4Nucleus::GetEnergyDeposit(), G4NuclearAbrasionGeometry::GetExcitationEnergyOfProjectile(), G4NuclearAbrasionGeometry::GetExcitationEnergyOfTarget(), G4Fragment::GetGroundStateMass(), G4HadProjectile::GetKineticEnergy(), G4DynamicParticle::GetKineticEnergy(), G4Fragment::GetMomentum(), G4HadFinalState::GetNumberOfSecondaries(), G4HadSecondary::GetParticle(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGCharge(), G4HadFinalState::GetSecondary(), G4HadProjectile::GetTotalEnergy(), G4WilsonRadius::GetWilsonRadius(), G4Fragment::GetZ(), G4Nucleus::GetZ_asInt(), isAlive, G4InuclParticleNames::lambda, CLHEP::HepLorentzVector::m(), CLHEP::Hep3Vector::mag(), CLHEP::Hep3Vector::mag2(), python.hepunit::MeV, n, G4DynamicParticle::Set4Momentum(), CLHEP::HepLorentzVector::setE(), G4HadFinalState::SetEnergyChange(), G4Fragment::SetMomentum(), G4HadFinalState::SetMomentumChange(), G4HadFinalState::SetStatusChange(), stopAndKill, G4HadronicInteraction::theParticleChange, CLHEP::Hep3Vector::unit(), CLHEP::HepLorentzVector::vect(), G4HadronicInteraction::verboseLevel, and test::x.

243 {
244 //
245 //
246 // The secondaries will be returned in G4HadFinalState &theParticleChange -
247 // initialise this. The original track will always be discontinued and
248 // secondaries followed.
249 //
252 //
253 //
254 // Get relevant information about the projectile and target (A, Z, energy/nuc,
255 // momentum, etc).
256 //
257  const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
258  const G4double AP = definitionP->GetBaryonNumber();
259  const G4double ZP = definitionP->GetPDGCharge();
260  G4LorentzVector pP = theTrack.Get4Momentum();
261  G4double E = theTrack.GetKineticEnergy()/AP;
262  G4double AT = theTarget.GetA_asInt();
263  G4double ZT = theTarget.GetZ_asInt();
264  G4double TotalEPre = theTrack.GetTotalEnergy() +
265  theTarget.AtomicMass(AT, ZT) + theTarget.GetEnergyDeposit();
266  G4double TotalEPost = 0.0;
267 //
268 //
269 // Determine the radii of the projectile and target nuclei.
270 //
271  G4WilsonRadius aR;
272  G4double rP = aR.GetWilsonRadius(AP);
273  G4double rT = aR.GetWilsonRadius(AT);
274  G4double rPsq = rP * rP;
275  G4double rTsq = rT * rT;
276  if (verboseLevel >= 2)
277  {
278  G4cout <<"########################################"
279  <<"########################################"
280  <<G4endl;
281  G4cout.precision(6);
282  G4cout <<"IN G4WilsonAbrasionModel" <<G4endl;
283  G4cout <<"Initial projectile A=" <<AP
284  <<", Z=" <<ZP
285  <<", radius = " <<rP/fermi <<" fm"
286  <<G4endl;
287  G4cout <<"Initial target A=" <<AT
288  <<", Z=" <<ZT
289  <<", radius = " <<rT/fermi <<" fm"
290  <<G4endl;
291  G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
292  }
293 //
294 //
295 // The following variables are used to determine the impact parameter in the
296 // near-field (i.e. taking into consideration the electrostatic repulsion).
297 //
298  G4double rm = ZP * ZT * elm_coupling / (E * AP);
299  G4double r = 0.0;
300  G4double rsq = 0.0;
301 //
302 //
303 // Initialise some of the variables which wll be used to calculate the chord-
304 // length for nucleons in the projectile and target, and hence calculate the
305 // number of abraded nucleons and the excitation energy.
306 //
307  G4NuclearAbrasionGeometry *theAbrasionGeometry = NULL;
308  G4double CT = 0.0;
309  G4double F = 0.0;
310  G4int Dabr = 0;
311 //
312 //
313 // The following loop is performed until the number of nucleons which are
314 // abraded by the process is >1, i.e. an interaction MUST occur.
315 //
316  while (Dabr == 0)
317  {
318 // Added by MHM 20050119 to fix leaking memory on second pass through this loop
319  if (theAbrasionGeometry)
320  {
321  delete theAbrasionGeometry;
322  theAbrasionGeometry = NULL;
323  }
324 //
325 //
326 // Sample the impact parameter. For the moment, this class takes account of
327 // electrostatic effects on the impact parameter, but (like HZETRN AND NUCFRG2)
328 // does not make any correction for the effects of nuclear-nuclear repulsion.
329 //
330  G4double rPT = rP + rT;
331  G4double rPTsq = rPT * rPT;
332 //
333 //
334 // This is a "catch" to make sure we don't go into an infinite loop because the
335 // energy is too low to overcome nuclear repulsion. PRT 20091023. If the
336 // value of rm < fradius * rPT then we're unlikely to sample a small enough
337 // impact parameter (energy of incident particle is too low). Return primary
338 // and don't complete nuclear interaction analysis.
339 //
340  if (rm >= fradius * rPT) {
344  if (verboseLevel >= 2) {
345  G4cout <<"Particle energy too low to overcome repulsion." <<G4endl;
346  G4cout <<"Event rejected and original track maintained" <<G4endl;
347  G4cout <<"########################################"
348  <<"########################################"
349  <<G4endl;
350  }
351  return &theParticleChange;
352  }
353 //
354 //
355 // Now sample impact parameter until the criterion is met that projectile
356 // and target overlap, but repulsion is taken into consideration.
357 //
358  G4int evtcnt = 0;
359  r = 1.1 * rPT;
360  while (r > rPT && ++evtcnt < 1000)
361  {
362  G4double bsq = rPTsq * G4UniformRand();
363  r = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
364  }
365 //
366 //
367 // We've tried to sample this 1000 times, but failed. Assume nuclei do not
368 // collide.
369 //
370  if (evtcnt >= 1000) {
374  if (verboseLevel >= 2) {
375  G4cout <<"Particle energy too low to overcome repulsion." <<G4endl;
376  G4cout <<"Event rejected and original track maintained" <<G4endl;
377  G4cout <<"########################################"
378  <<"########################################"
379  <<G4endl;
380  }
381  return &theParticleChange;
382  }
383 
384 
385  rsq = r * r;
386 //
387 //
388 // Now determine the chord-length through the target nucleus.
389 //
390  if (rT > rP)
391  {
392  G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
393  if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
394  else CT = 2.0 * std::sqrt(rTsq - rsq);
395  }
396  else
397  {
398  G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
399  if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
400  else CT = 2.0 * rT;
401  }
402 //
403 //
404 // Determine the number of abraded nucleons. Note that the mean number of
405 // abraded nucleons is used to sample the Poisson distribution. The Poisson
406 // distribution is sampled only ten times with the current impact parameter,
407 // and if it fails after this to find a case for which the number of abraded
408 // nucleons >1, the impact parameter is re-sampled.
409 //
410  theAbrasionGeometry = new G4NuclearAbrasionGeometry(AP,AT,r);
411  F = theAbrasionGeometry->F();
412  G4double lambda = 16.6*fermi / std::pow(E/MeV,0.26);
413  G4double Mabr = F * AP * (1.0 - std::exp(-CT/lambda));
414  G4long n = 0;
415  for (G4int i = 0; i<10; i++)
416  {
417  n = G4Poisson(Mabr);
418  if (n > 0)
419  {
420  if (n>AP) Dabr = (G4int) AP;
421  else Dabr = (G4int) n;
422  break;
423  }
424  }
425  }
426  if (verboseLevel >= 2)
427  {
428  G4cout <<G4endl;
429  G4cout <<"Impact parameter = " <<r/fermi <<" fm" <<G4endl;
430  G4cout <<"# Abraded nucleons = " <<Dabr <<G4endl;
431  }
432 //
433 //
434 // The number of abraded nucleons must be no greater than the number of
435 // nucleons in either the projectile or the target. If AP - Dabr < 2 or
436 // AT - Dabr < 2 then either we have only a nucleon left behind in the
437 // projectile/target or we've tried to abrade too many nucleons - and Dabr
438 // should be limited.
439 //
440  if (AP - (G4double) Dabr < 2.0) Dabr = (G4int) AP;
441  if (AT - (G4double) Dabr < 2.0) Dabr = (G4int) AT;
442 //
443 //
444 // Determine the abraded secondary nucleons from the projectile. *fragmentP
445 // is a pointer to the prefragment from the projectile and nSecP is the number
446 // of nucleons in theParticleChange which have been abraded. The total energy
447 // from these is determined.
448 //
449  G4ThreeVector boost = pP.findBoostToCM();
450  G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP);
452  G4int i = 0;
453  for (i=0; i<nSecP; i++)
454  {
455  TotalEPost += theParticleChange.GetSecondary(i)->
456  GetParticle()->GetTotalEnergy();
457  }
458 //
459 //
460 // Determine the number of spectators in the interaction region for the
461 // projectile.
462 //
463  G4int DspcP = (G4int) (AP*F) - Dabr;
464  if (DspcP <= 0) DspcP = 0;
465  else if (DspcP > AP-Dabr) DspcP = ((G4int) AP) - Dabr;
466 //
467 //
468 // Determine excitation energy associated with excess surface area of the
469 // projectile (EsP) and the excitation due to scattering of nucleons which are
470 // retained within the projectile (ExP). Add the total energy from the excited
471 // nucleus to the total energy of the secondaries.
472 //
473  G4bool excitationAbsorbedByProjectile = false;
474  if (fragmentP != NULL)
475  {
476  G4double EsP = theAbrasionGeometry->GetExcitationEnergyOfProjectile();
477  G4double ExP = 0.0;
478  if (Dabr < AT)
479  excitationAbsorbedByProjectile = G4UniformRand() < 0.5;
480  if (excitationAbsorbedByProjectile)
481  ExP = GetNucleonInducedExcitation(rP, rT, r);
482  G4double xP = EsP + ExP;
483  if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
484  G4LorentzVector lorentzVector = fragmentP->GetMomentum();
485  lorentzVector.setE(lorentzVector.e()+xP);
486  fragmentP->SetMomentum(lorentzVector);
487  TotalEPost += lorentzVector.e();
488  }
489  G4double EMassP = TotalEPost;
490 //
491 //
492 // Determine the abraded secondary nucleons from the target. Note that it's
493 // assumed that the same number of nucleons are abraded from the target as for
494 // the projectile, and obviously no boost is applied to the products. *fragmentT
495 // is a pointer to the prefragment from the target and nSec is the total number
496 // of nucleons in theParticleChange which have been abraded. The total energy
497 // from these is determined.
498 //
499  G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT);
501  for (i=nSecP; i<nSec; i++)
502  {
503  TotalEPost += theParticleChange.GetSecondary(i)->
504  GetParticle()->GetTotalEnergy();
505  }
506 //
507 //
508 // Determine the number of spectators in the interaction region for the
509 // target.
510 //
511  G4int DspcT = (G4int) (AT*F) - Dabr;
512  if (DspcT <= 0) DspcT = 0;
513  else if (DspcT > AP-Dabr) DspcT = ((G4int) AT) - Dabr;
514 //
515 //
516 // Determine excitation energy associated with excess surface area of the
517 // target (EsT) and the excitation due to scattering of nucleons which are
518 // retained within the target (ExT). Add the total energy from the excited
519 // nucleus to the total energy of the secondaries.
520 //
521  if (fragmentT != NULL)
522  {
523  G4double EsT = theAbrasionGeometry->GetExcitationEnergyOfTarget();
524  G4double ExT = 0.0;
525  if (!excitationAbsorbedByProjectile)
526  ExT = GetNucleonInducedExcitation(rT, rP, r);
527  G4double xT = EsT + ExT;
528  if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
529  G4LorentzVector lorentzVector = fragmentT->GetMomentum();
530  lorentzVector.setE(lorentzVector.e()+xT);
531  fragmentT->SetMomentum(lorentzVector);
532  TotalEPost += lorentzVector.e();
533  }
534 //
535 //
536 // Now determine the difference between the pre and post interaction
537 // energy - this will be used to determine the Lorentz boost if conservation
538 // of energy is to be imposed/attempted.
539 //
540  G4double deltaE = TotalEPre - TotalEPost;
541  if (deltaE > 0.0 && conserveEnergy)
542  {
543  G4double beta = std::sqrt(1.0 - EMassP*EMassP/std::pow(deltaE+EMassP,2.0));
544  boost = boost / boost.mag() * beta;
545  }
546 //
547 //
548 // Now boost the secondaries from the projectile.
549 //
550  G4ThreeVector pBalance = pP.vect();
551  for (i=0; i<nSecP; i++)
552  {
554  GetParticle();
555  G4LorentzVector lorentzVector = dynamicP->Get4Momentum();
556  lorentzVector.boost(-boost);
557  dynamicP->Set4Momentum(lorentzVector);
558  pBalance -= lorentzVector.vect();
559  }
560 //
561 //
562 // Set the boost for the projectile prefragment. This is now based on the
563 // conservation of momentum. However, if the user selected momentum of the
564 // prefragment is not to be conserved this simply boosted to the velocity of the
565 // original projectile times the ratio of the unexcited to the excited mass
566 // of the prefragment (the excitation increases the effective mass of the
567 // prefragment, and therefore modifying the boost is an attempt to prevent
568 // the momentum of the prefragment being excessive).
569 //
570  if (fragmentP != NULL)
571  {
572  G4LorentzVector lorentzVector = fragmentP->GetMomentum();
573  G4double fragmentM = lorentzVector.m();
574  if (conserveMomentum)
575  fragmentP->SetMomentum
576  (G4LorentzVector(pBalance,std::sqrt(pBalance.mag2()+fragmentM*fragmentM+1.0*eV*eV)));
577  else
578  {
579  G4double fragmentGroundStateM = fragmentP->GetGroundStateMass();
580  fragmentP->SetMomentum(lorentzVector.boost(-boost * fragmentGroundStateM/fragmentM));
581  }
582  }
583 //
584 //
585 // Output information to user if verbose information requested.
586 //
587  if (verboseLevel >= 2)
588  {
589  G4cout <<G4endl;
590  G4cout <<"-----------------------------------" <<G4endl;
591  G4cout <<"Secondary nucleons from projectile:" <<G4endl;
592  G4cout <<"-----------------------------------" <<G4endl;
593  G4cout.precision(7);
594  for (i=0; i<nSecP; i++)
595  {
596  G4cout <<"Particle # " <<i <<G4endl;
599  G4cout <<"New nucleon (P) " <<dyn->GetDefinition()->GetParticleName()
600  <<" : " <<dyn->Get4Momentum()
601  <<G4endl;
602  }
603  G4cout <<"---------------------------" <<G4endl;
604  G4cout <<"The projectile prefragment:" <<G4endl;
605  G4cout <<"---------------------------" <<G4endl;
606  if (fragmentP != NULL)
607  G4cout <<*fragmentP <<G4endl;
608  else
609  G4cout <<"(No residual prefragment)" <<G4endl;
610  G4cout <<G4endl;
611  G4cout <<"-------------------------------" <<G4endl;
612  G4cout <<"Secondary nucleons from target:" <<G4endl;
613  G4cout <<"-------------------------------" <<G4endl;
614  G4cout.precision(7);
615  for (i=nSecP; i<nSec; i++)
616  {
617  G4cout <<"Particle # " <<i <<G4endl;
620  G4cout <<"New nucleon (T) " <<dyn->GetDefinition()->GetParticleName()
621  <<" : " <<dyn->Get4Momentum()
622  <<G4endl;
623  }
624  G4cout <<"-----------------------" <<G4endl;
625  G4cout <<"The target prefragment:" <<G4endl;
626  G4cout <<"-----------------------" <<G4endl;
627  if (fragmentT != NULL)
628  G4cout <<*fragmentT <<G4endl;
629  else
630  G4cout <<"(No residual prefragment)" <<G4endl;
631  }
632 //
633 //
634 // Now we can decay the nuclear fragments if present. The secondaries are
635 // collected and boosted as well. This is performed first for the projectile...
636 //
637  if (fragmentP !=NULL)
638  {
639  G4ReactionProductVector *products = NULL;
640  if (fragmentP->GetZ() != fragmentP->GetA())
641  products = theExcitationHandler->BreakItUp(*fragmentP);
642  else
643  products = theExcitationHandlerx->BreakItUp(*fragmentP);
644  delete fragmentP;
645  fragmentP = NULL;
646 
647  G4ReactionProductVector::iterator iter;
648  for (iter = products->begin(); iter != products->end(); ++iter)
649  {
650  G4DynamicParticle *secondary =
651  new G4DynamicParticle((*iter)->GetDefinition(),
652  (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
653  theParticleChange.AddSecondary (secondary); // Added MHM 20050118
654  G4String particleName = (*iter)->GetDefinition()->GetParticleName();
655  delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
656  if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
657  {
658  G4cout <<"------------------------" <<G4endl;
659  G4cout <<"The projectile fragment:" <<G4endl;
660  G4cout <<"------------------------" <<G4endl;
661  G4cout <<" fragmentP = " <<particleName
662  <<" Energy = " <<secondary->GetKineticEnergy()
663  <<G4endl;
664  }
665  }
666  delete products; // Added MHM 20050118
667  }
668 //
669 //
670 // Now decay the target nucleus - no boost is applied since in this
671 // approximation it is assumed that there is negligible momentum transfer from
672 // the projectile.
673 //
674  if (fragmentT != NULL)
675  {
676  G4ReactionProductVector *products = NULL;
677  if (fragmentT->GetZ() != fragmentT->GetA())
678  products = theExcitationHandler->BreakItUp(*fragmentT);
679  else
680  products = theExcitationHandlerx->BreakItUp(*fragmentT);
681  delete fragmentT;
682  fragmentT = NULL;
683 
684  G4ReactionProductVector::iterator iter;
685  for (iter = products->begin(); iter != products->end(); ++iter)
686  {
687  G4DynamicParticle *secondary =
688  new G4DynamicParticle((*iter)->GetDefinition(),
689  (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
690  theParticleChange.AddSecondary (secondary);
691  G4String particleName = (*iter)->GetDefinition()->GetParticleName();
692  delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
693  if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
694  {
695  G4cout <<"--------------------" <<G4endl;
696  G4cout <<"The target fragment:" <<G4endl;
697  G4cout <<"--------------------" <<G4endl;
698  G4cout <<" fragmentT = " <<particleName
699  <<" Energy = " <<secondary->GetKineticEnergy()
700  <<G4endl;
701  }
702  }
703  delete products; // Added MHM 20050118
704  }
705 
706  if (verboseLevel >= 2)
707  G4cout <<"########################################"
708  <<"########################################"
709  <<G4endl;
710 
711  delete theAbrasionGeometry;
712 
713  return &theParticleChange;
714 }
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:240
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:51
G4HadSecondary * GetSecondary(size_t i)
G4double GetKineticEnergy() const
G4double GetA() const
Definition: G4Fragment.hh:303
tuple elm_coupling
Definition: hepunit.py:286
long G4long
Definition: G4Types.hh:80
void DumpInfo(G4int mode=0) const
G4ParticleDefinition * GetDefinition() const
int G4int
Definition: G4Types.hh:78
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState) const
const G4String & GetParticleName() const
void SetStatusChange(G4HadFinalStateStatus aS)
std::vector< G4ReactionProduct * > G4ReactionProductVector
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
bool G4bool
Definition: G4Types.hh:79
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:271
HepLorentzVector & boost(double, double, double)
void SetMomentum(const G4LorentzVector &value)
Definition: G4Fragment.hh:276
G4double GetKineticEnergy() const
G4double GetEnergyDeposit()
Definition: G4Nucleus.hh:184
G4double GetGroundStateMass() const
Definition: G4Fragment.hh:260
const G4int n
const G4LorentzVector & Get4Momentum() const
G4LorentzVector Get4Momentum() const
void Set4Momentum(const G4LorentzVector &momentum)
void SetEnergyChange(G4double anEnergy)
Hep3Vector findBoostToCM() const
Hep3Vector unit() const
G4DynamicParticle * GetParticle()
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
double mag2() const
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76
G4double GetPDGCharge() const
double mag() const
void SetMomentumChange(const G4ThreeVector &aV)
G4int GetNumberOfSecondaries() const
void AddSecondary(G4DynamicParticle *aP)
G4double GetWilsonRadius(G4double A)
G4double GetZ() const
Definition: G4Fragment.hh:298
G4double GetTotalEnergy() const
CLHEP::HepLorentzVector G4LorentzVector
G4bool G4WilsonAbrasionModel::GetConserveMomentum ( )
inline

Definition at line 139 of file G4WilsonAbrasionModel.hh.

140  {return conserveMomentum;}
G4ExcitationHandler * G4WilsonAbrasionModel::GetExcitationHandler ( )
inline

Definition at line 124 of file G4WilsonAbrasionModel.hh.

125  {return theExcitationHandler;}
G4bool G4WilsonAbrasionModel::GetUseAblation ( )
inline

Definition at line 127 of file G4WilsonAbrasionModel.hh.

128  {return useAblation;}
void G4WilsonAbrasionModel::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 167 of file G4WilsonAbrasionModel.cc.

168 {
169  outFile << "G4WilsonAbrasionModel is a macroscopic treatment of\n"
170  << "nucleus-nucleus collisions using simple geometric arguments.\n"
171  << "The smaller projectile nucleus gouges out a part of the larger\n"
172  << "target nucleus, leaving a residual nucleus and a fireball\n"
173  << "region where the projectile and target intersect. The fireball"
174  << "is then treated as a highly excited nuclear fragment. This\n"
175  << "model is based on the NUCFRG2 model and is valid for all\n"
176  << "projectile energies between 70 MeV/n and 10.1 GeV/n. \n";
177 }
std::ofstream outFile
Definition: GammaRayTel.cc:68
const G4WilsonAbrasionModel& G4WilsonAbrasionModel::operator= ( G4WilsonAbrasionModel right)
void G4WilsonAbrasionModel::SetConserveMomentum ( G4bool  conserveMomentum1)
inline

Definition at line 136 of file G4WilsonAbrasionModel.hh.

137  {conserveMomentum = conserveMomentum1;}
void G4WilsonAbrasionModel::SetExcitationHandler ( G4ExcitationHandler aExcitationHandler)
inline

Definition at line 121 of file G4WilsonAbrasionModel.hh.

122  {theExcitationHandler = aExcitationHandler;}
void G4WilsonAbrasionModel::SetUseAblation ( G4bool  useAblation1)

Definition at line 875 of file G4WilsonAbrasionModel.cc.

References python.hepunit::MeV, G4ExcitationHandler::SetEvaporation(), G4ExcitationHandler::SetFermiModel(), G4ExcitationHandler::SetMaxAandZForFermiBreakUp(), G4ExcitationHandler::SetMinEForMultiFrag(), G4ExcitationHandler::SetMultiFragmentation(), G4WilsonAblationModel::SetVerboseLevel(), and G4HadronicInteraction::verboseLevel.

876 {
877  if (useAblation != useAblation1)
878  {
879  useAblation = useAblation1;
880  delete theExcitationHandler;
881  delete theExcitationHandlerx;
882  theExcitationHandler = new G4ExcitationHandler;
883  theExcitationHandlerx = new G4ExcitationHandler;
884  if (useAblation)
885  {
886  theAblation = new G4WilsonAblationModel;
887  theAblation->SetVerboseLevel(verboseLevel);
888  theExcitationHandler->SetEvaporation(theAblation);
889  theExcitationHandlerx->SetEvaporation(theAblation);
890  }
891  else
892  {
893  theAblation = NULL;
894  G4Evaporation * theEvaporation = new G4Evaporation;
895  G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
896  G4StatMF * theMF = new G4StatMF;
897  theExcitationHandler->SetEvaporation(theEvaporation);
898  theExcitationHandler->SetFermiModel(theFermiBreakUp);
899  theExcitationHandler->SetMultiFragmentation(theMF);
900  theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
901  theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
902 
903  theEvaporation = new G4Evaporation;
904  theFermiBreakUp = new G4FermiBreakUp;
905  theExcitationHandlerx->SetEvaporation(theEvaporation);
906  theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
907  theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
908  }
909  }
910  return;
911 }
void SetMinEForMultiFrag(G4double anE)
void SetFermiModel(G4VFermiBreakUp *ptr)
void SetMultiFragmentation(G4VMultiFragmentation *ptr)
void SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ)
void SetEvaporation(G4VEvaporation *ptr)
void G4WilsonAbrasionModel::SetVerboseLevel ( G4int  verboseLevel1)
inlinevirtual

Reimplemented from G4HadronicInteraction.

Definition at line 142 of file G4WilsonAbrasionModel.hh.

References G4WilsonAblationModel::SetVerboseLevel(), and G4HadronicInteraction::verboseLevel.

143 {
144  verboseLevel = verboseLevel1;
145  if (useAblation) theAblation->SetVerboseLevel(verboseLevel);
146 }

The documentation for this class was generated from the following files: