Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4Evaporation Class Reference

#include <G4Evaporation.hh>

Inheritance diagram for G4Evaporation:
G4VEvaporation

Public Member Functions

 G4Evaporation ()
 
 G4Evaporation (G4VEvaporationChannel *photoEvaporation)
 
virtual ~G4Evaporation ()
 
virtual void Initialise ()
 
G4FragmentVectorBreakItUp (const G4Fragment &theNucleus)
 
void SetDefaultChannel ()
 
void SetGEMChannel ()
 
void SetCombinedChannel ()
 
virtual void SetPhotonEvaporation (G4VEvaporationChannel *ptr)
 
- Public Member Functions inherited from G4VEvaporation
 G4VEvaporation ()
 
virtual ~G4VEvaporation ()
 
G4VEvaporationChannelGetPhotonEvaporation ()
 
void SetOPTxs (G4int opt)
 
void UseSICB (G4bool use)
 

Additional Inherited Members

- Protected Attributes inherited from G4VEvaporation
G4VEvaporationChannelthePhotonEvaporation
 
G4int OPTxs
 
G4bool useSICB
 

Detailed Description

Definition at line 55 of file G4Evaporation.hh.

Constructor & Destructor Documentation

G4Evaporation::G4Evaporation ( )

Definition at line 64 of file G4Evaporation.cc.

References G4ParticleTable::GetIonTable(), G4ParticleTable::GetParticleTable(), SetPhotonEvaporation(), and G4VEvaporation::thePhotonEvaporation.

65  : theChannels(0),nChannels(0)
66 {
69  SetParameters();
70  InitialiseEvaporation();
71  theTableOfIons = G4ParticleTable::GetParticleTable()->GetIonTable();
72 }
virtual void SetPhotonEvaporation(G4VEvaporationChannel *ptr)
G4VEvaporationChannel * thePhotonEvaporation
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
G4Evaporation::G4Evaporation ( G4VEvaporationChannel photoEvaporation)

Definition at line 74 of file G4Evaporation.cc.

References G4ParticleTable::GetIonTable(), G4ParticleTable::GetParticleTable(), SetPhotonEvaporation(), and G4VEvaporation::thePhotonEvaporation.

75  : theChannels(0),nChannels(0)
76 {
77  if(photoEvaporation) { SetPhotonEvaporation(photoEvaporation); }
79 
81  SetParameters();
82  InitialiseEvaporation();
83  theTableOfIons = G4ParticleTable::GetParticleTable()->GetIonTable();
84 }
virtual void SetPhotonEvaporation(G4VEvaporationChannel *ptr)
G4VEvaporationChannel * thePhotonEvaporation
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
G4Evaporation::~G4Evaporation ( )
virtual

Definition at line 86 of file G4Evaporation.cc.

References G4VEvaporation::thePhotonEvaporation.

87 {
88  CleanChannels();
89  delete thePhotonEvaporation;
90  delete theChannelFactory;
91 }
G4VEvaporationChannel * thePhotonEvaporation

Member Function Documentation

G4FragmentVector * G4Evaporation::BreakItUp ( const G4Fragment theNucleus)
virtual

Implements G4VEvaporation.

Definition at line 152 of file G4Evaporation.cc.

References G4UnstableFragmentBreakUp::BreakUpFragment(), G4UniformRand, G4Fragment::GetA_asInt(), G4Fragment::GetExcitationEnergy(), G4NistManager::GetIsotopeAbundance(), G4Fragment::GetZ_asInt(), and python.hepunit::MeV.

153 {
154  G4FragmentVector * theResult = new G4FragmentVector;
155  G4FragmentVector * theTempResult;
156  static const G4double Elimit = 3*MeV;
157 
158  // The residual nucleus (after evaporation of each fragment)
159  G4Fragment* theResidualNucleus = new G4Fragment(theNucleus);
160 
161  G4double totprob, prob, oldprob = 0.0;
162  size_t maxchannel, i;
163 
164  G4int Amax = theResidualNucleus->GetA_asInt();
165 
166  // Starts loop over evaporated particles, loop is limited by number
167  // of nucleons
168  for(G4int ia=0; ia<Amax; ++ia) {
169 
170  // g,n,p and light fragments - evaporation is finished
171  G4int Z = theResidualNucleus->GetZ_asInt();
172  G4int A = theResidualNucleus->GetA_asInt();
173 
174  // stop deecitation loop if can be deexcited by FBU
175  if(maxZforFBU > Z && maxAforFBU >= A) {
176  theResult->push_back(theResidualNucleus);
177  return theResult;
178  }
179 
180  // check if it is stable, then finish evaporation
181  G4double abun = nist->GetIsotopeAbundance(Z, A);
182  /*
183  G4cout << "### G4Evaporation::BreakItUp step " << ia << " Z= " << Z
184  << " A= " << A << " Eex(MeV)= "
185  << theResidualNucleus->GetExcitationEnergy()
186  << " aban= " << abun << G4endl;
187  */
188  // stop deecitation loop in the case of the cold stable fragment
189  G4double Eex = theResidualNucleus->GetExcitationEnergy();
190  if(Eex <= minExcitation && abun > 0.0) {
191  theResult->push_back(theResidualNucleus);
192  return theResult;
193  }
194 
195  totprob = 0.0;
196  maxchannel = nChannels;
197  /*
198  G4cout << "### Evaporation loop #" << ia
199  << " Fragment: " << theResidualNucleus << G4endl;
200  */
201  // loop over evaporation channels
202  for(i=0; i<nChannels; ++i) {
203  prob = (*theChannels)[i]->GetEmissionProbability(theResidualNucleus);
204  //G4cout << " Channel# " << i << " prob= " << prob << G4endl;
205 
206  totprob += prob;
207  probabilities[i] = totprob;
208  // if two recent probabilities are near zero stop computations
209  if(i>=8) {
210  if(prob <= totprob*1.e-8 && oldprob <= totprob*1.e-8) {
211  maxchannel = i+1;
212  break;
213  }
214  }
215  oldprob = prob;
216  // protection for very excited fragment - avoid GEM
217  if(7 == i && Eex > Elimit*A) {
218  maxchannel = 8;
219  break;
220  }
221  }
222 
223  // photon evaporation in the case of no other channels available
224  // do evaporation chain and reset total probability
225  if(0.0 < totprob && probabilities[0] == totprob) {
226  //G4cout << "Start gamma evaporation" << G4endl;
227  theTempResult = (*theChannels)[0]->BreakUpFragment(theResidualNucleus);
228  if(theTempResult) {
229  size_t nsec = theTempResult->size();
230  for(size_t j=0; j<nsec; ++j) {
231  theResult->push_back((*theTempResult)[j]);
232  }
233  delete theTempResult;
234  }
235  totprob = 0.0;
236  }
237 
238  // stable fragnent - evaporation is finished
239  if(0.0 == totprob) {
240 
241  // if fragment is exotic, then force its decay
242  if(0.0 == abun && Z < 20) {
243  //G4cout << "$$$ Decay exotic fragment" << G4endl;
244  theTempResult = unstableBreakUp.BreakUpFragment(theResidualNucleus);
245  if(theTempResult) {
246  size_t nsec = theTempResult->size();
247  for(size_t j=0; j<nsec; ++j) {
248  theResult->push_back((*theTempResult)[j]);
249  }
250  delete theTempResult;
251  }
252  }
253 
254  // save residual fragment
255  theResult->push_back(theResidualNucleus);
256  return theResult;
257  }
258 
259  // select channel
260  totprob *= G4UniformRand();
261  // loop over evaporation channels
262  for(i=0; i<maxchannel; ++i) { if(probabilities[i] >= totprob) { break; } }
263 
264  // this should not happen
265  if(i >= nChannels) { i = nChannels - 1; }
266 
267 
268  // single photon evaporation, primary pointer is kept
269  if(0 == i) {
270  //G4cout << "Single gamma" << G4endl;
271  G4Fragment* gamma = (*theChannels)[0]->EmittedFragment(theResidualNucleus);
272  if(gamma) { theResult->push_back(gamma); }
273 
274  // fission, return results to the main loop if fission is succesful
275  } else if(1 == i) {
276  //G4cout << "Fission" << G4endl;
277  theTempResult = (*theChannels)[1]->BreakUp(*theResidualNucleus);
278  if(theTempResult) {
279  size_t nsec = theTempResult->size();
280  G4bool deletePrimary = true;
281  for(size_t j=0; j<nsec; ++j) {
282  if(theResidualNucleus == (*theTempResult)[j]) { deletePrimary = false; }
283  theResult->push_back((*theTempResult)[j]);
284  }
285  if(deletePrimary) { delete theResidualNucleus; }
286  delete theTempResult;
287  return theResult;
288  }
289 
290  // other channels
291  } else {
292  //G4cout << "Channel # " << i << G4endl;
293  theTempResult = (*theChannels)[i]->BreakUp(*theResidualNucleus);
294  if(theTempResult) {
295  size_t nsec = theTempResult->size();
296  if(nsec > 0) {
297  --nsec;
298  for(size_t j=0; j<nsec; ++j) {
299  theResult->push_back((*theTempResult)[j]);
300  }
301  // if the residual change its pointer
302  // then delete previous residual fragment and update to the new
303  if(theResidualNucleus != (*theTempResult)[nsec] ) {
304  delete theResidualNucleus;
305  theResidualNucleus = (*theTempResult)[nsec];
306  }
307  }
308  delete theTempResult;
309  }
310  }
311  }
312 
313  // loop is stopped, save residual
314  theResult->push_back(theResidualNucleus);
315 
316  return theResult;
317 }
int G4int
Definition: G4Types.hh:78
virtual G4FragmentVector * BreakUpFragment(G4Fragment *fragment)
#define G4UniformRand()
Definition: Randomize.hh:87
G4int GetA_asInt() const
Definition: G4Fragment.hh:238
bool G4bool
Definition: G4Types.hh:79
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:65
G4double GetIsotopeAbundance(G4int Z, G4int N) const
G4int GetZ_asInt() const
Definition: G4Fragment.hh:243
double G4double
Definition: G4Types.hh:76
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:255
void G4Evaporation::Initialise ( )
virtual

Reimplemented from G4VEvaporation.

Definition at line 117 of file G4Evaporation.cc.

References G4VEvaporation::OPTxs, and G4VEvaporation::useSICB.

118 {
119  for(size_t i=0; i<nChannels; ++i) {
120  (*theChannels)[i]->SetOPTxs(OPTxs);
121  (*theChannels)[i]->UseSICB(useSICB);
122  }
123 }
void G4Evaporation::SetCombinedChannel ( )

Definition at line 139 of file G4Evaporation.cc.

References G4VEvaporation::thePhotonEvaporation.

140 {
141  delete theChannelFactory;
142  theChannelFactory = new G4EvaporationDefaultGEMFactory(thePhotonEvaporation);
143  InitialiseEvaporation();
144 }
G4VEvaporationChannel * thePhotonEvaporation
void G4Evaporation::SetDefaultChannel ( )

Definition at line 125 of file G4Evaporation.cc.

References G4VEvaporation::thePhotonEvaporation.

126 {
127  delete theChannelFactory;
128  theChannelFactory = new G4EvaporationFactory(thePhotonEvaporation);
129  InitialiseEvaporation();
130 }
G4VEvaporationChannel * thePhotonEvaporation
void G4Evaporation::SetGEMChannel ( )

Definition at line 132 of file G4Evaporation.cc.

References G4VEvaporation::thePhotonEvaporation.

133 {
134  delete theChannelFactory;
135  theChannelFactory = new G4EvaporationGEMFactory(thePhotonEvaporation);
136  InitialiseEvaporation();
137 }
G4VEvaporationChannel * thePhotonEvaporation
void G4Evaporation::SetPhotonEvaporation ( G4VEvaporationChannel ptr)
virtual

Reimplemented from G4VEvaporation.

Definition at line 146 of file G4Evaporation.cc.

References G4VEvaporation::SetPhotonEvaporation().

Referenced by G4Evaporation().

147 {
148  if(ptr) { G4VEvaporation::SetPhotonEvaporation(ptr); }
149  if(0 < nChannels) { (*theChannels)[0] = ptr; }
150 }
virtual void SetPhotonEvaporation(G4VEvaporationChannel *ptr)

The documentation for this class was generated from the following files: