Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4MuMinusCapturePrecompound Class Reference

#include <G4MuMinusCapturePrecompound.hh>

Inheritance diagram for G4MuMinusCapturePrecompound:
G4HadronicInteraction

Public Member Functions

 G4MuMinusCapturePrecompound (G4VPreCompoundModel *ptr=0)
 
 ~G4MuMinusCapturePrecompound ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
virtual G4int GetVerboseLevel () const
 
virtual void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair
< G4double, G4double
GetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double,
G4double
GetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 65 of file G4MuMinusCapturePrecompound.hh.

Constructor & Destructor Documentation

G4MuMinusCapturePrecompound::G4MuMinusCapturePrecompound ( G4VPreCompoundModel ptr = 0)

Definition at line 64 of file G4MuMinusCapturePrecompound.cc.

References G4HadronicInteractionRegistry::FindModel(), G4ParticleDefinition::GetPDGMass(), G4HadronicInteractionRegistry::Instance(), python.hepunit::MeV, G4MuonMinus::MuonMinus(), G4Neutron::Neutron(), and G4Proton::Proton().

66  : G4HadronicInteraction("muMinusNuclearCapture")
67 {
68  fMuMass = G4MuonMinus::MuonMinus()->GetPDGMass();
69  fProton = G4Proton::Proton();
70  fNeutron = G4Neutron::Neutron();
71  fThreshold = 10*MeV;
72  fTime = 0.0;
73  fPreCompound = ptr;
74  if(!ptr) {
77  ptr = static_cast<G4VPreCompoundModel*>(p);
78  fPreCompound = ptr;
79  if(!ptr) { fPreCompound = new G4PreCompoundModel(); }
80  }
81 }
const char * p
Definition: xmltok.h:285
static G4Proton * Proton()
Definition: G4Proton.cc:93
G4HadronicInteraction(const G4String &modelName="HadronicModel")
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4HadronicInteraction * FindModel(const G4String &name)
G4double GetPDGMass() const
static G4HadronicInteractionRegistry * Instance()
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
G4MuMinusCapturePrecompound::~G4MuMinusCapturePrecompound ( )

Definition at line 85 of file G4MuMinusCapturePrecompound.cc.

References G4HadFinalState::Clear().

86 {
87  result.Clear();
88 }

Member Function Documentation

G4HadFinalState * G4MuMinusCapturePrecompound::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 93 of file G4MuMinusCapturePrecompound.cc.

References CLHEP::HepLorentzVector::boost(), CLHEP::HepLorentzVector::boostVector(), G4HadFinalState::Clear(), G4VPreCompoundModel::DeExcite(), CLHEP::HepLorentzVector::e(), FatalException, G4cout, G4endl, G4Exception(), G4RandomDirection(), G4UniformRand, G4Nucleus::GetA_asInt(), G4HadProjectile::GetBoundEnergy(), G4ReactionProduct::GetDefinition(), G4HadProjectile::GetGlobalTime(), G4ReactionProduct::GetKineticEnergy(), G4HadronicInteraction::GetModelName(), G4ReactionProduct::GetMomentum(), G4NucleiProperties::GetNuclearMass(), G4Fancy3DNucleus::GetNucleons(), G4HadFinalState::GetNumberOfSecondaries(), G4ReactionProduct::GetTOF(), G4Nucleus::GetZ_asInt(), python.hepunit::GeV, G4Fancy3DNucleus::Init(), CLHEP::HepLorentzVector::mag(), python.hepunit::MeV, n, G4NeutrinoMu::NeutrinoMu(), python.hepunit::neutron_mass_c2, CLHEP::HepLorentzVector::set(), G4HadFinalState::SetStatusChange(), stopAndKill, G4Triton::Triton(), CLHEP::Hep3Vector::unit(), CLHEP::HepLorentzVector::vect(), and G4HadronicInteraction::verboseLevel.

95 {
96  result.Clear();
98  fTime = projectile.GetGlobalTime();
99  G4double time0 = fTime;
100 
101  G4double muBindingEnergy = projectile.GetBoundEnergy();
102 
103  G4int Z = targetNucleus.GetZ_asInt();
104  G4int A = targetNucleus.GetA_asInt();
106 
107  /*
108  G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Emu= "
109  << muBindingEnergy << G4endl;
110  */
111  // Energy on K-shell
112  G4double muEnergy = fMuMass + muBindingEnergy;
113  G4double muMom = std::sqrt(muBindingEnergy*(muBindingEnergy + 2.0*fMuMass));
114  G4double availableEnergy = massA + fMuMass - muBindingEnergy;
115  G4double residualMass = G4NucleiProperties::GetNuclearMass(A, Z - 1);
116 
117  G4ThreeVector vmu = muMom*G4RandomDirection();
118  G4LorentzVector aMuMom(vmu, muEnergy);
119 
120  // p or 3He as a target
121  // two body reaction mu- + A(Z,A) -> nuMu + A(Z-1,A)
122  if((1 == Z && 1 == A) || (2 == Z && 3 == A)) {
123 
124  G4ParticleDefinition* pd = 0;
125  if(1 == Z) { pd = fNeutron; }
126  else { pd = G4Triton::Triton(); }
127 
128  //
129  // Computation in assumption of CM reaction
130  //
131  G4double e = 0.5*(availableEnergy -
132  residualMass*residualMass/availableEnergy);
133 
135  AddNewParticle(G4NeutrinoMu::NeutrinoMu(), nudir, e);
136  nudir *= -1.0;
137  AddNewParticle(pd, nudir, availableEnergy - e - residualMass);
138 
139 
140  } else {
141  // sample mu- + p -> nuMu + n reaction in CM of muonic atom
142 
143  // nucleus
144  G4LorentzVector momInitial(0.0,0.0,0.0,availableEnergy);
145  G4LorentzVector momResidual, momNu;
146 
147  // pick random proton inside nucleus
148  G4double eEx;
149  fNucleus.Init(A, Z);
150  const std::vector<G4Nucleon>& nucleons= fNucleus.GetNucleons();
151  G4ParticleDefinition* pDef;
152 
153  G4int reentryCount = 0;
154 
155  do {
156  ++reentryCount;
157  G4int index = 0;
158  do {
159  index=G4int(A*G4UniformRand());
160  pDef = nucleons[index].GetDefinition();
161  } while(pDef != fProton);
162  G4LorentzVector momP = nucleons[index].Get4Momentum();
163 
164  // Get CMS kinematics
165  G4LorentzVector theCMS = momP + aMuMom;
166  G4ThreeVector bst = theCMS.boostVector();
167 
168  G4double Ecms = theCMS.mag();
169  G4double Enu = 0.5*(Ecms - neutron_mass_c2*neutron_mass_c2/Ecms);
170  eEx = 0.0;
171 
172  if(Enu > 0.0) {
173  // make the nu, and transform to lab;
174  momNu.set(Enu*G4RandomDirection(), Enu);
175 
176  // nu in lab.
177  momNu.boost(bst);
178  momResidual = momInitial - momNu;
179  eEx = momResidual.mag() - residualMass;
180  }
181  if(reentryCount > 1000) {
183  ed << "Call for " << GetModelName() << G4endl;
184  ed << "Target Z= " << Z
185  << " A= " << A << " Eex(MeV)= " << eEx/MeV << G4endl;
186  ed << " ApplyYourself does not completed after 1000 attempts";
187  G4Exception("G4MuMinusCapturePrecompound::ApplyYourself", "had006",
188  FatalException, ed);
189  }
190  } while(eEx <= 0.0);
191 
192  G4ThreeVector dir = momNu.vect().unit();
193  AddNewParticle(G4NeutrinoMu::NeutrinoMu(), dir, momNu.e());
194 
195  G4Fragment initialState(A, Z-1, momResidual);
196  initialState.SetNumberOfExcitedParticle(2,0);
197  initialState.SetNumberOfHoles(1,1);
198 
199  // decay time for pre-compound/de-excitation starts from zero
200  G4ReactionProductVector* rpv = fPreCompound->DeExcite(initialState);
201  size_t n = rpv->size();
202  for(size_t i=0; i<n; ++i) {
203  G4ReactionProduct* rp = (*rpv)[i];
204 
205  // reaction time
206  fTime = time0 + rp->GetTOF();
207  G4ThreeVector direction = rp->GetMomentum().unit();
208  AddNewParticle(rp->GetDefinition(), direction, rp->GetKineticEnergy());
209  delete rp;
210  }
211  delete rpv;
212  }
213  if(verboseLevel > 1)
214  G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Nsec= "
215  << result.GetNumberOfSecondaries()
216  <<" E0(MeV)= " <<availableEnergy/MeV
217  <<" Mres(GeV)= " <<residualMass/GeV
218  <<G4endl;
219 
220  return &result;
221 }
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
Hep3Vector boostVector() const
static G4double GetNuclearMass(const G4double A, const G4double Z)
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment)=0
G4ThreeVector G4RandomDirection()
const G4String & GetModelName() const
int G4int
Definition: G4Types.hh:78
G4ParticleDefinition * GetDefinition() const
void SetStatusChange(G4HadFinalStateStatus aS)
std::vector< G4ReactionProduct * > G4ReactionProductVector
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
double mag() const
static G4NeutrinoMu * NeutrinoMu()
Definition: G4NeutrinoMu.cc:85
HepLorentzVector & boost(double, double, double)
void Init(G4int theA, G4int theZ)
static G4Triton * Triton()
Definition: G4Triton.cc:95
const G4int n
const std::vector< G4Nucleon > & GetNucleons()
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
float neutron_mass_c2
Definition: hepunit.py:276
G4double GetKineticEnergy() const
void set(double x, double y, double z, double t)
Hep3Vector unit() const
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double GetTOF() const
G4ThreeVector GetMomentum() const
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76
G4int GetNumberOfSecondaries() const
void G4MuMinusCapturePrecompound::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 225 of file G4MuMinusCapturePrecompound.cc.

226 {
227  outFile << "Sampling of mu- capture by atomic nucleus from K-shell"
228  << " mesoatom orbit.\n"
229  << "Primary reaction mu- + p -> n + neutrino, neutron providing\n"
230  << " initial excitation of the target nucleus and PreCompound"
231  << " model samples final state\n";
232 }
std::ofstream outFile
Definition: GammaRayTel.cc:68

The documentation for this class was generated from the following files: