Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4EmLivermorePolarizedPhysics Class Reference

#include <G4EmLivermorePolarizedPhysics.hh>

Inheritance diagram for G4EmLivermorePolarizedPhysics:
G4VPhysicsConstructor

Public Member Functions

 G4EmLivermorePolarizedPhysics (G4int ver=1)
 
 G4EmLivermorePolarizedPhysics (G4int ver, const G4String &)
 
virtual ~G4EmLivermorePolarizedPhysics ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 36 of file G4EmLivermorePolarizedPhysics.hh.

Constructor & Destructor Documentation

G4EmLivermorePolarizedPhysics::G4EmLivermorePolarizedPhysics ( G4int  ver = 1)

Definition at line 126 of file G4EmLivermorePolarizedPhysics.cc.

References bElectromagnetic, G4LossTableManager::Instance(), and G4VPhysicsConstructor::SetPhysicsType().

127  : G4VPhysicsConstructor("G4EmLivermorePolarizedPhysics"), verbose(ver)
128 {
131 }
static G4LossTableManager * Instance()
G4VPhysicsConstructor(const G4String &="")
G4EmLivermorePolarizedPhysics::G4EmLivermorePolarizedPhysics ( G4int  ver,
const G4String  
)

Definition at line 135 of file G4EmLivermorePolarizedPhysics.cc.

References bElectromagnetic, G4LossTableManager::Instance(), and G4VPhysicsConstructor::SetPhysicsType().

136  : G4VPhysicsConstructor("G4EmLivermorePolarizedPhysics"), verbose(ver)
137 {
140 }
static G4LossTableManager * Instance()
G4VPhysicsConstructor(const G4String &="")
G4EmLivermorePolarizedPhysics::~G4EmLivermorePolarizedPhysics ( )
virtual

Definition at line 144 of file G4EmLivermorePolarizedPhysics.cc.

145 {}

Member Function Documentation

void G4EmLivermorePolarizedPhysics::ConstructParticle ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 149 of file G4EmLivermorePolarizedPhysics.cc.

References G4Alpha::Alpha(), G4AntiProton::AntiProton(), G4Deuteron::Deuteron(), G4Electron::Electron(), G4Gamma::Gamma(), G4GenericIon::GenericIonDefinition(), G4He3::He3(), G4KaonMinus::KaonMinusDefinition(), G4KaonPlus::KaonPlusDefinition(), G4MuonMinus::MuonMinus(), G4MuonPlus::MuonPlus(), G4PionMinus::PionMinusDefinition(), G4PionPlus::PionPlusDefinition(), G4Positron::Positron(), G4Proton::Proton(), and G4Triton::Triton().

150 {
151 // gamma
152  G4Gamma::Gamma();
153 
154 // leptons
159 
160 // mesons
165 
166 // baryons
169 
170 // ions
173  G4He3::He3();
174  G4Alpha::Alpha();
176 }
static G4KaonPlus * KaonPlusDefinition()
Definition: G4KaonPlus.cc:108
static G4GenericIon * GenericIonDefinition()
Definition: G4GenericIon.cc:88
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:99
static G4KaonMinus * KaonMinusDefinition()
Definition: G4KaonMinus.cc:108
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
static G4PionMinus * PionMinusDefinition()
Definition: G4PionMinus.cc:93
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4PionPlus * PionPlusDefinition()
Definition: G4PionPlus.cc:93
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
static G4Positron * Positron()
Definition: G4Positron.cc:94
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4He3 * He3()
Definition: G4He3.cc:94
void G4EmLivermorePolarizedPhysics::ConstructProcess ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 180 of file G4EmLivermorePolarizedPhysics.cc.

References G4VMultipleScattering::AddEmModel(), G4VEmProcess::AddEmModel(), G4VEnergyLossProcess::AddEmModel(), aParticleIterator, python.hepunit::eV, fUseDistanceToBoundary, G4cout, G4endl, G4ParticleDefinition::GetParticleName(), G4PhysicsListHelper::GetPhysicsListHelper(), G4VPhysicsConstructor::GetPhysicsName(), python.hepunit::GeV, G4LossTableManager::Instance(), python.hepunit::MeV, G4InuclParticleNames::mup, G4InuclParticleNames::pip, G4InuclParticleNames::pp, G4PhysicsListHelper::RegisterProcess(), G4VEmModel::SetActivationLowEnergyLimit(), G4LossTableManager::SetAtomDeexcitation(), G4EmProcessOptions::SetDEDXBinning(), G4VEmProcess::SetEmModel(), G4VEnergyLossProcess::SetEmModel(), G4VAtomDeexcitation::SetFluo(), G4VEmModel::SetHighEnergyLimit(), G4EmProcessOptions::SetLambdaBinning(), G4VEmModel::SetLowEnergyLimit(), G4EmProcessOptions::SetMaxEnergy(), G4VEmProcess::SetMaxKinEnergy(), G4EmProcessOptions::SetMinEnergy(), G4VEmProcess::SetMinKinEnergy(), G4EmProcessOptions::SetPolarAngleLimit(), G4VEnergyLossProcess::SetStepFunction(), G4VMultipleScattering::SetStepLimitType(), G4EmProcessOptions::SetVerbose(), and python.hepunit::TeV.

181 {
182  if(verbose > 1) {
183  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
184  }
186 
187  // muon & hadron bremsstrahlung and pair production
196 
197  // muon & hadron multiple scattering
199  mumsc->AddEmModel(0, new G4WentzelVIModel());
201  pimsc->AddEmModel(0, new G4WentzelVIModel());
203  kmsc->AddEmModel(0, new G4WentzelVIModel());
205  pmsc->AddEmModel(0, new G4WentzelVIModel());
206  G4hMultipleScattering* hmsc = new G4hMultipleScattering("ionmsc");
207 
208  // high energy limit for e+- scattering models
209  G4double highEnergyLimit = 100*MeV;
210 
211  // nuclear stopping
212  G4NuclearStopping* ionnuc = new G4NuclearStopping();
213  G4NuclearStopping* pnuc = new G4NuclearStopping();
214 
215  // Add Livermore EM Processes
216  aParticleIterator->reset();
217 
218  while( (*aParticleIterator)() ){
219 
220  G4ParticleDefinition* particle = aParticleIterator->value();
221  G4String particleName = particle->GetParticleName();
222 
223  //Applicability range for Livermore models
224  //for higher energies, the Standard models are used
225  G4double LivermoreHighEnergyLimit = GeV;
226 
227  if (particleName == "gamma") {
228 
229  G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect();
231  theLivermorePhotoElectricModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
232  thePhotoElectricEffect->AddEmModel(0, theLivermorePhotoElectricModel);
233  ph->RegisterProcess(thePhotoElectricEffect, particle);
234 
235  G4ComptonScattering* theComptonScattering = new G4ComptonScattering();
236  G4LivermorePolarizedComptonModel* theLivermoreComptonModel = new G4LivermorePolarizedComptonModel();
237  theLivermoreComptonModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
238  theComptonScattering->AddEmModel(0, theLivermoreComptonModel);
239  ph->RegisterProcess(theComptonScattering, particle);
240 
241  G4GammaConversion* theGammaConversion = new G4GammaConversion();
243  theLivermoreGammaConversionModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
244  theGammaConversion->AddEmModel(0, theLivermoreGammaConversionModel);
245  ph->RegisterProcess(theGammaConversion, particle);
246 
247  G4RayleighScattering* theRayleigh = new G4RayleighScattering();
249  theRayleighModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
250  theRayleigh->AddEmModel(0, theRayleighModel);
251  ph->RegisterProcess(theRayleigh, particle);
252 
253  } else if (particleName == "e-") {
254 
255  // multiple scattering
258  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
259  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
260  msc1->SetHighEnergyLimit(highEnergyLimit);
261  msc2->SetLowEnergyLimit(highEnergyLimit);
262  msc->AddEmModel(0, msc1);
263  msc->AddEmModel(0, msc2);
264 
267  ss->SetEmModel(ssm, 1);
268  ss->SetMinKinEnergy(highEnergyLimit);
269  ssm->SetLowEnergyLimit(highEnergyLimit);
270  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
271  ph->RegisterProcess(msc, particle);
272  ph->RegisterProcess(ss, particle);
273 
274  // Ionisation
275  G4eIonisation* eIoni = new G4eIonisation();
276  G4LivermoreIonisationModel* theIoniLivermore = new
278  theIoniLivermore->SetHighEnergyLimit(0.1*MeV);
279  eIoni->AddEmModel(0, theIoniLivermore, new G4UniversalFluctuation() );
280  eIoni->SetStepFunction(0.2, 100*um); //
281  ph->RegisterProcess(eIoni, particle);
282 
283  // Bremsstrahlung from standard
284  G4eBremsstrahlung* eBrem = new G4eBremsstrahlung();
285  ph->RegisterProcess(eBrem, particle);
286 
287  } else if (particleName == "e+") {
288 
289  // multiple scattering
292  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
293  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
294  msc1->SetHighEnergyLimit(highEnergyLimit);
295  msc2->SetLowEnergyLimit(highEnergyLimit);
296  msc->AddEmModel(0, msc1);
297  msc->AddEmModel(0, msc2);
298 
301  ss->SetEmModel(ssm, 1);
302  ss->SetMinKinEnergy(highEnergyLimit);
303  ssm->SetLowEnergyLimit(highEnergyLimit);
304  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
305 
306  // Ionisation
307  G4eIonisation* eIoni = new G4eIonisation();
308  eIoni->SetStepFunction(0.2, 100*um);
309 
310  ph->RegisterProcess(msc, particle);
311  ph->RegisterProcess(eIoni, particle);
312  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
313  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
314  ph->RegisterProcess(ss, particle);
315 
316  } else if (particleName == "mu+" ||
317  particleName == "mu-" ) {
318 
319  G4MuIonisation* muIoni = new G4MuIonisation();
320  muIoni->SetStepFunction(0.2, 50*um);
321 
322  ph->RegisterProcess(mumsc, particle);
323  ph->RegisterProcess(muIoni, particle);
324  ph->RegisterProcess(mub, particle);
325  ph->RegisterProcess(mup, particle);
326  ph->RegisterProcess(new G4CoulombScattering(), particle);
327 
328  } else if (particleName == "alpha" ||
329  particleName == "He3" ) {
330 
331  // Identical to G4EmStandardPhysics_option3
332 
334  G4ionIonisation* ionIoni = new G4ionIonisation();
335  ionIoni->SetStepFunction(0.1, 10*um);
336 
337  ph->RegisterProcess(msc, particle);
338  ph->RegisterProcess(ionIoni, particle);
339  ph->RegisterProcess(ionnuc, particle);
340 
341  } else if (particleName == "GenericIon") {
342 
343  // Identical to G4EmStandardPhysics_option3
344 
345  G4ionIonisation* ionIoni = new G4ionIonisation();
346  ionIoni->SetEmModel(new G4IonParametrisedLossModel());
347  ionIoni->SetStepFunction(0.1, 1*um);
348 
349  ph->RegisterProcess(hmsc, particle);
350  ph->RegisterProcess(ionIoni, particle);
351  ph->RegisterProcess(ionnuc, particle);
352 
353  } else if (particleName == "pi+" ||
354  particleName == "pi-" ) {
355 
356  //G4hMultipleScattering* pimsc = new G4hMultipleScattering();
357  G4hIonisation* hIoni = new G4hIonisation();
358  hIoni->SetStepFunction(0.2, 50*um);
359 
360  ph->RegisterProcess(pimsc, particle);
361  ph->RegisterProcess(hIoni, particle);
362  ph->RegisterProcess(pib, particle);
363  ph->RegisterProcess(pip, particle);
364 
365  } else if (particleName == "kaon+" ||
366  particleName == "kaon-" ) {
367 
368  //G4hMultipleScattering* kmsc = new G4hMultipleScattering();
369  G4hIonisation* hIoni = new G4hIonisation();
370  hIoni->SetStepFunction(0.2, 50*um);
371 
372  ph->RegisterProcess(kmsc, particle);
373  ph->RegisterProcess(hIoni, particle);
374  ph->RegisterProcess(kb, particle);
375  ph->RegisterProcess(kp, particle);
376 
377  } else if (particleName == "proton" ||
378  particleName == "anti_proton") {
379 
380  //G4hMultipleScattering* pmsc = new G4hMultipleScattering();
381  G4hIonisation* hIoni = new G4hIonisation();
382  hIoni->SetStepFunction(0.2, 50*um);
383 
384  ph->RegisterProcess(pmsc, particle);
385  ph->RegisterProcess(hIoni, particle);
386  ph->RegisterProcess(pb, particle);
387  ph->RegisterProcess(pp, particle);
388  ph->RegisterProcess(pnuc, particle);
389 
390  } else if (particleName == "B+" ||
391  particleName == "B-" ||
392  particleName == "D+" ||
393  particleName == "D-" ||
394  particleName == "Ds+" ||
395  particleName == "Ds-" ||
396  particleName == "anti_He3" ||
397  particleName == "anti_alpha" ||
398  particleName == "anti_deuteron" ||
399  particleName == "anti_lambda_c+" ||
400  particleName == "anti_omega-" ||
401  particleName == "anti_sigma_c+" ||
402  particleName == "anti_sigma_c++" ||
403  particleName == "anti_sigma+" ||
404  particleName == "anti_sigma-" ||
405  particleName == "anti_triton" ||
406  particleName == "anti_xi_c+" ||
407  particleName == "anti_xi-" ||
408  particleName == "deuteron" ||
409  particleName == "lambda_c+" ||
410  particleName == "omega-" ||
411  particleName == "sigma_c+" ||
412  particleName == "sigma_c++" ||
413  particleName == "sigma+" ||
414  particleName == "sigma-" ||
415  particleName == "tau+" ||
416  particleName == "tau-" ||
417  particleName == "triton" ||
418  particleName == "xi_c+" ||
419  particleName == "xi-" ) {
420 
421  // Identical to G4EmStandardPhysics_option3
422 
423  ph->RegisterProcess(hmsc, particle);
424  ph->RegisterProcess(new G4hIonisation(), particle);
425  ph->RegisterProcess(pnuc, particle);
426  }
427  }
428 
429  // Em options
430  //
431  G4EmProcessOptions opt;
432  opt.SetVerbose(verbose);
433 
434  // Multiple Coulomb scattering
435  //
436  opt.SetPolarAngleLimit(CLHEP::pi);
437 
438  // Physics tables
439  //
440 
441  opt.SetMinEnergy(100*eV);
442  opt.SetMaxEnergy(10*TeV);
443  opt.SetDEDXBinning(220);
444  opt.SetLambdaBinning(220);
445 
446  // Nuclear stopping
447  pnuc->SetMaxKinEnergy(MeV);
448 
449  // Ionization
450  //
451  //opt.SetSubCutoff(true);
452 
453  // Deexcitation
454  //
457  de->SetFluo(true);
458 }
static G4LossTableManager * Instance()
void SetMinEnergy(G4double val)
void SetStepFunction(G4double v1, G4double v2)
const G4String & GetParticleName() const
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:683
void SetDEDXBinning(G4int val)
void SetEmModel(G4VEmModel *, G4int index=1)
G4GLOB_DLL std::ostream G4cout
void SetLambdaBinning(G4int val)
#define aParticleIterator
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
void AddEmModel(G4int, G4VEmModel *, G4VEmFluctuationModel *fluc=0, const G4Region *region=0)
const G4String & GetPhysicsName() const
void SetMaxEnergy(G4double val)
void SetActivationLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:704
void SetMaxKinEnergy(G4double e)
void AddEmModel(G4int, G4VEmModel *, const G4Region *region=0)
void AddEmModel(G4int order, G4VEmModel *, const G4Region *region=0)
static G4PhysicsListHelper * GetPhysicsListHelper()
void SetEmModel(G4VEmModel *, G4int index=1)
#define G4endl
Definition: G4ios.hh:61
void SetMinKinEnergy(G4double e)
double G4double
Definition: G4Types.hh:76
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:690
void SetAtomDeexcitation(G4VAtomDeexcitation *)
void SetStepLimitType(G4MscStepLimitType val)
void SetVerbose(G4int val, const G4String &name="all", G4bool worker=false)
void SetPolarAngleLimit(G4double val)

The documentation for this class was generated from the following files: