46 ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
47 ResidualAthrd = FragmentAthrd = U = 0.0;
59 G4double G4ProtonEvaporationProbability::CCoeficient(
G4int aZ)
73 C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
104 if (
OPTxs==0) {std::ostringstream errOs;
105 errOs <<
"We should'n be here (OPT =0) at evaporation cross section calculation (protons)!!" <<
G4endl;
108 else if(
OPTxs==1 )
return GetOpt1( K);
109 else if(
OPTxs==2 ||
OPTxs==4)
return GetOpt2( K);
110 else if (
OPTxs==3 )
return GetOpt3( K);
112 std::ostringstream errOs;
113 errOs <<
"BAD PROTON CROSS SECTION OPTION AT EVAPORATION!!" <<
G4endl;
127 if (K > 50*
MeV) { Kc = 50*
MeV; }
129 G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2,xs;
144 Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
145 p = p0 + p1/Ec + p2/(Ec*Ec);
146 landa = landa0*ResidualA + landa1;
150 nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
151 q = landa - nu/(Ec*Ec) - 2*p*Ec;
152 r = mu + 2*nu/Ec + p*(Ec*Ec);
155 if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
156 else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
157 if (xs <0.0) {xs=0.0;}
167 G4double eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0);
177 G4int rnneu=ResidualA-ResidualZ;
181 b0=2.247-0.915*(1.-1./ResidualAthrd);
182 fac1=b0*(1.-1./ResidualAthrd);
184 if(rnneu > 1.5) { fac2 =
fG4pow->
logZ(rnneu); }
185 xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1);
186 xine_th=(1.-0.15*
G4Exp(-ekin))*xine_th/(1.00-0.0007*ResidualA);
187 ff1=0.70-0.0020*ResidualA;
189 ff3=0.8+18/
G4double(ResidualA)-0.002*ResidualA;
191 fac=1.-(1./(1.+
G4Exp(-8.*ff1*(log10E + 1.37*ff2))));
192 xine_th=xine_th*(1.+ff3*fac);
193 ff1=1.-1/
G4double(ResidualA)-0.001*ResidualA;
194 ff2=1.17-2.7/
G4double(ResidualA)-0.0014*ResidualA;
195 fac=-8.*ff1*(log10E + 2.0*ff2);
196 fac=1./(1.+
G4Exp(fac));
199 std::ostringstream errOs;
200 G4cout<<
"WARNING: negative Wellisch cross section "<<
G4endl;
201 errOs <<
"RESIDUAL: A=" << ResidualA <<
" Z=" << ResidualZ <<
G4endl;
202 errOs <<
" xsec("<<ekin<<
" MeV) ="<<xine_th <<
G4endl;
214 G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2;
235 G4double ec,ecsq,xnulam,etest(0.),ra(0.),
a,w,
c,signor(1.),signor2,sig;
241 if (ResidualA <= 60) { signor = 0.92; }
242 else if (ResidualA < 100) { signor = 0.8 + ResidualA*0.002; }
244 ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
246 p = p0 + p1/ec + p2/ecsq;
247 landa = landa0*ResidualA + landa1;
250 nu = a* (nu0+nu1*ec+nu2*ecsq);
256 if (xnulam > spill) { xnulam=0.; }
257 if (xnulam >= flow) { etest =std::sqrt(xnulam) + 7.; }
259 a = -2.*p*ec + landa - nu/ecsq;
260 b = p*ecsq + mu + 2.*nu/ec;
263 if (cut > 0.) { ecut = std::sqrt(cut); }
264 ecut = (ecut-
a) / (p+p);
270 if (cut < 0.) { ecut2 = ecut; }
271 elab = K * FragmentA /
G4double(ResidualA);
274 if (elab > ecut2) { sig = (p*elab*elab+a*elab+
b) * signor; }
276 signor2 = (ec-elab-
c) / w;
277 signor2 = 1. +
G4Exp(signor2);
281 sig = (landa*elab+mu+nu/elab) * signor;
284 if (xnulam < flow || elab < etest)
286 if (sig <0.0) {sig=0.0;}
289 geom = std::sqrt(theA*K);
290 geom = 1.23*ResidualAthrd + ra + 4.573/geom;
291 geom = 31.416 * geom * geom;
G4double GetCoulombBarrier(G4int ARes, G4int ZRes, G4double U) const
G4double logZ(G4int Z) const
G4GLOB_DLL std::ostream G4cout
G4double Z13(G4int Z) const
virtual ~G4ProtonEvaporationProbability()
G4double G4Log(G4double x)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
T max(const T t1, const T t2)
brief Return the largest of the two arguments
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4ProtonEvaporationProbability()
G4double powZ(G4int Z, G4double y) const
G4double GetExcitationEnergy() const