Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4CoulombBarrier Class Reference

#include <G4CoulombBarrier.hh>

Inheritance diagram for G4CoulombBarrier:
G4VCoulombBarrier G4AlphaCoulombBarrier G4DeuteronCoulombBarrier G4He3CoulombBarrier G4NeutronCoulombBarrier G4ProtonCoulombBarrier G4TritonCoulombBarrier

Public Member Functions

 G4CoulombBarrier ()
 
 G4CoulombBarrier (G4int anA, G4int aZ)
 
virtual ~G4CoulombBarrier ()
 
G4double GetCoulombBarrier (G4int ARes, G4int ZRes, G4double U) const
 
- Public Member Functions inherited from G4VCoulombBarrier
 G4VCoulombBarrier (G4int anA, G4int aZ)
 
virtual ~G4VCoulombBarrier ()
 
G4int GetA (void) const
 
G4int GetZ (void) const
 

Detailed Description

Definition at line 43 of file G4CoulombBarrier.hh.

Constructor & Destructor Documentation

G4CoulombBarrier::G4CoulombBarrier ( )

Definition at line 42 of file G4CoulombBarrier.cc.

G4CoulombBarrier::G4CoulombBarrier ( G4int  anA,
G4int  aZ 
)

Definition at line 45 of file G4CoulombBarrier.cc.

G4CoulombBarrier::~G4CoulombBarrier ( )
virtual

Definition at line 49 of file G4CoulombBarrier.cc.

50 {}

Member Function Documentation

G4double G4CoulombBarrier::GetCoulombBarrier ( G4int  ARes,
G4int  ZRes,
G4double  U 
) const
virtual

New coulomb Barrier according to original Dostrovski's paper

Implements G4VCoulombBarrier.

Definition at line 57 of file G4CoulombBarrier.cc.

References python.hepunit::elm_coupling, python.hepunit::fermi, G4endl, G4VCoulombBarrier::GetA(), G4Pow::GetInstance(), G4VCoulombBarrier::GetZ(), and G4Pow::Z13().

59 {
60  G4double Barrier = 0.0;
61  if (ZRes > ARes || ARes < 1) {
62  std::ostringstream errOs;
63  errOs << "G4CoulombBarrier::GetCoulombBarrier: ";
64  errOs << "Wrong values for ";
65  errOs << "residual nucleus A = " << ARes << " ";
66  errOs << "and residual nucleus Z = " << ZRes << G4endl;
67 
68  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
69  }
70  if (GetA() == 1 && GetZ() == 0) {
71  Barrier = 0.0; // Neutron Coulomb Barrier is 0
72  } else {
73 
74  // JMQ: old coulomb barrier commented since it does not agree with Dostrovski's prescription
75  // and too low barriers are obtained (for protons at least)
76  // calculation of K penetration factor is correct
77  // G4double CompoundRadius = CalcCompoundRadius(static_cast<G4double>(ZRes));
78  // Barrier = elm_coupling/CompoundRadius * static_cast<G4double>(GetZ())*static_cast<G4double>(ZRes)/
79  // (std::pow(static_cast<G4double>(GetA()),1./3.) + std::pow(static_cast<G4double>(ARes),1./3.));
80 
81  ///New coulomb Barrier according to original Dostrovski's paper
82  G4double rho=1.2*fermi;
83  if(GetA()==1 && GetZ()==1){ rho=0.0;}
84 
85  G4double RN=1.5*fermi;
86  // VI cleanup
87  Barrier=elm_coupling*(GetZ()*ZRes)/(RN * G4Pow::GetInstance()->Z13(ARes) + rho);
88 
89  // Barrier penetration coeficient
90  G4double K = BarrierPenetrationFactor(ZRes);
91 
92  Barrier *= K;
93 
94  // JMQ : the following statement has unknown origin and dimensionally is meaningless( energy divided by mass number in argument of sqrt function). Energy dependence of Coulomb barrier penetrability should be included in proper way (if needed..)
95  // Barrier /= (1.0 + std::sqrt(U/(2.0*static_cast<G4double>(ARes))));
96  //
97  }
98  return Barrier;
99 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:53
G4int GetA(void) const
tuple elm_coupling
Definition: hepunit.py:286
G4double Z13(G4int Z) const
Definition: G4Pow.hh:129
G4int GetZ(void) const
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76

The documentation for this class was generated from the following files: