69 useGNASHTransition(false), OPTxs(3), useSICB(false),
70 useNGB(false), useSCO(false), useCEMtr(true), maxZ(3), maxA(5)
85 theTransition->
UseNGB(useNGB);
101 outFile <<
"The GEANT4 precompound model is considered as an extension of the\n"
102 <<
"hadron kinetic model. It gives a possibility to extend the low energy range\n"
103 <<
"of the hadron kinetic model for nucleon-nucleus inelastic collision and it \n"
104 <<
"provides a ”smooth” transition from kinetic stage of reaction described by the\n"
105 <<
"hadron kinetic model to the equilibrium stage of reaction described by the\n"
106 <<
"equilibrium deexcitation models.\n"
107 <<
"The initial information for calculation of pre-compound nuclear stage\n"
108 <<
"consists of the atomic mass number A, charge Z of residual nucleus, its\n"
109 <<
"four momentum P0 , excitation energy U and number of excitons n, which equals\n"
110 <<
"the sum of the number of particles p (from them p_Z are charged) and the number of\n"
112 <<
"At the preequilibrium stage of reaction, we follow the exciton model approach in ref. [1],\n"
113 <<
"taking into account the competition among all possible nuclear transitions\n"
114 <<
"with ∆n = +2, −2, 0 (which are defined by their associated transition probabilities) and\n"
115 <<
"the emission of neutrons, protons, deutrons, thritium and helium nuclei (also defined by\n"
116 <<
"their associated emission probabilities according to exciton model)\n"
118 <<
"[1] K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A401 329 (1983)\n"
127 if(primary != neutron && primary != proton) {
128 std::ostringstream errOs;
129 errOs <<
"BAD primary type in G4PreCompoundModel: "
136 if(primary == proton) { Zp = 1; }
169 for(G4ReactionProductVector::iterator i= result->begin(); i != result->end(); ++i)
173 (*i)->GetTotalEnergy(),
174 (*i)->GetMomentum());
197 if ((Z < maxZ && A < maxA) || Eex < MeV /*|| Eex > 3.*
MeV*A*/) {
198 PerformEquilibriumEmission(aFragment, Result);
217 G4int EquilibriumExcitonNumber =
227 G4bool ThereIsTransition =
false;
244 if (test <= EquilibriumExcitonNumber) { go_ahead=
true; }
247 if (useSCO && go_ahead)
255 G4double TotalTransitionProbability =
266 if(!go_ahead || P1 <= P2+P3 ||
270 PerformEquilibriumEmission(aFragment,Result);
285 PerformEquilibriumEmission(aFragment,Result);
292 G4double TotalProbability = TotalEmissionProbability
293 + TotalTransitionProbability;
296 if (TotalProbability*
G4UniformRand() > TotalEmissionProbability)
300 ThereIsTransition =
true;
308 ThereIsTransition =
false;
312 }
while (ThereIsTransition);
323 useHETCEmission =
true;
329 useHETCEmission =
false;
334 useGNASHTransition =
true;
335 delete theTransition;
337 theTransition->
UseNGB(useNGB);
342 useGNASHTransition =
false;
343 delete theTransition;
345 theTransition->
UseNGB(useNGB);
virtual void PerformTransition(G4Fragment &aFragment)=0
void UseDefaultEmission()
static G4double GetNuclearMass(const G4double A, const G4double Z)
virtual ~G4PreCompoundModel()
G4PreCompoundModel(G4ExcitationHandler *ptr=0)
void SetNumberOfHoles(G4int valueTot, G4int valueP=0)
G4double GetTransitionProb2() const
void UseGNASHTransition()
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)
const G4String & GetParticleName() const
void SetStatusChange(G4HadFinalStateStatus aS)
void SetExcitationHandler(G4ExcitationHandler *ptr)
std::vector< G4ReactionProduct * > G4ReactionProductVector
void SetNumberOfExcitedParticle(G4int valueTot, G4int valueP)
G4ExcitationHandler * GetExcitationHandler() const
void UseDefaultTransition()
const G4ParticleDefinition * GetDefinition() const
void UseCEMtr(G4bool use)
G4double GetGlobalTime() const
static G4Proton * Proton()
static G4Neutron * Neutron()
G4double GetTransitionProb1() const
const G4LorentzVector & Get4Momentum() const
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment)
virtual G4double CalculateProbability(const G4Fragment &aFragment)=0
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
G4ReactionProduct * PerformEmission(G4Fragment &aFragment)
void SetCreationTime(G4double time)
G4int GetNumberOfExcitons() const
virtual void ModelDescription(std::ostream &outFile) const
G4double GetTransitionProb3() const
void AddSecondary(G4DynamicParticle *aP)
G4double GetLevelDensity()
G4double GetExcitationEnergy() const
void Initialize(const G4Fragment &aFragment)
G4double GetTotalProbability(const G4Fragment &aFragment)
CLHEP::HepLorentzVector G4LorentzVector