Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4INCLCoulombNonRelativistic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
28 // Davide Mancusi, CEA
29 // Alain Boudard, CEA
30 // Sylvie Leray, CEA
31 // Joseph Cugnon, University of Liege
32 //
33 #define INCLXX_IN_GEANT4_MODE 1
34 
35 #include "globals.hh"
36 
37 /** \file G4INCLCoulombNonRelativistic.cc
38  * \brief Class for non-relativistic Coulomb distortion.
39  *
40  * \date 14 February 2011
41  * \author Davide Mancusi
42  */
43 
45 #include "G4INCLGlobals.hh"
46 
47 namespace G4INCL {
48 
50  // No distortion for neutral particles
51  if(p->getZ()!=0) {
52  const G4bool success = coulombDeviation(p, n);
53  if(!success) // transparent
54  return NULL;
55  }
56 
57  // Rely on the CoulombNone slave to compute the straight-line intersection
58  // and actually bring the particle to the surface of the nucleus
59  return theCoulombNoneSlave.bringToSurface(p,n);
60  }
61 
63  // Neutral clusters?!
64 // assert(c->getZ()>0);
65 
66  // Perform the actual Coulomb deviation
67  const G4bool success = coulombDeviation(c, n);
68  if(!success) {
69  return IAvatarList();
70  }
71 
72  // Rely on the CoulombNone slave to compute the straight-line intersection
73  // and actually bring the particle to the surface of the nucleus
74  return theCoulombNoneSlave.bringToSurface(c,n);
75  }
76 
78  Nucleus const * const nucleus) const {
79 
80  for(ParticleIter particle=pL.begin(), e=pL.end(); particle!=e; ++particle) {
81 
82  const G4int Z = (*particle)->getZ();
83  if(Z == 0) continue;
84 
85  const G4double tcos=1.-0.000001;
86 
87  const G4double et1 = PhysicalConstants::eSquared * nucleus->getZ();
88  const G4double transmissionRadius =
89  nucleus->getDensity()->getTransmissionRadius(*particle);
90 
91  const ThreeVector position = (*particle)->getPosition();
92  ThreeVector momentum = (*particle)->getMomentum();
93  const G4double r = position.mag();
94  const G4double p = momentum.mag();
95  const G4double cosTheta = position.dot(momentum)/(r*p);
96  if(cosTheta < 0.999999) {
97  const G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta);
98  const G4double eta = et1 * Z / (*particle)->getKineticEnergy();
99  if(eta > transmissionRadius-0.0001) {
100  // If below the Coulomb barrier, radial emission:
101  momentum = position * (p/r);
102  (*particle)->setMomentum(momentum);
103  } else {
104  const G4double b0 = 0.5 * (eta + std::sqrt(eta*eta +
105  4. * std::pow(transmissionRadius*sinTheta,2)
106  * (1.-eta/transmissionRadius)));
107  const G4double bInf = std::sqrt(b0*(b0-eta));
108  const G4double thr = std::atan(eta/(2.*bInf));
109  G4double uTemp = (1.-b0/transmissionRadius) * std::sin(thr) +
110  b0/transmissionRadius;
111  if(uTemp>tcos) uTemp=tcos;
112  const G4double thd = std::acos(cosTheta)-Math::piOverTwo + thr +
113  std::acos(uTemp);
114  const G4double c1 = std::sin(thd)*cosTheta/sinTheta + std::cos(thd);
115  const G4double c2 = -p*std::sin(thd)/(r*sinTheta);
116  const ThreeVector newMomentum = momentum*c1 + position*c2;
117  (*particle)->setMomentum(newMomentum);
118  }
119  }
120  }
121  }
122 
124  Nucleus const * const n) const {
125  const G4double theMinimumDistance = minimumDistance(p, kinE, n);
126  G4double rMax = n->getUniverseRadius();
127  if(p.theType == Composite)
129  const G4double theMaxImpactParameterSquared = rMax*(rMax-theMinimumDistance);
130  if(theMaxImpactParameterSquared<=0.)
131  return 0.;
132  const G4double theMaxImpactParameter = std::sqrt(theMaxImpactParameterSquared);
133  return theMaxImpactParameter;
134  }
135 
136  G4bool CoulombNonRelativistic::coulombDeviation(Particle * const p, Nucleus const * const n) const {
137  // Determine the rotation angle and the new impact parameter
138  ThreeVector positionTransverse = p->getTransversePosition();
139  const G4double impactParameterSquared = positionTransverse.mag2();
140  const G4double impactParameter = std::sqrt(impactParameterSquared);
141 
142  // Some useful variables
143  const G4double theMinimumDistance = minimumDistance(p, n);
144  // deltaTheta2 = (pi - Rutherford scattering angle)/2
145  const G4double deltaTheta2 = std::atan(2.*impactParameter/theMinimumDistance);
146  const G4double eccentricity = 1./std::cos(deltaTheta2);
147 
148  G4double newImpactParameter, alpha; // Parameters that must be determined by the deviation
149 
150  const G4double radius = getCoulombRadius(p->getSpecies(), n);
151  const G4double impactParameterTangentSquared = radius*(radius-theMinimumDistance);
152  if(impactParameterSquared >= impactParameterTangentSquared) {
153  // The particle trajectory misses the Coulomb sphere
154  // In this case the new impact parameter is the minimum distance of
155  // approach of the hyperbola
156 // assert(std::abs(1. + 2.*impactParameter*impactParameter/(radius*theMinimumDistance))>=eccentricity);
157  newImpactParameter = 0.5 * theMinimumDistance * (1.+eccentricity); // the minimum distance of approach
158  alpha = Math::piOverTwo - deltaTheta2; // half the Rutherford scattering angle
159  } else {
160  // The particle trajectory intersects the Coulomb sphere
161 
162  // Compute the entrance angle
163  const G4double argument = -(1. + 2.*impactParameter*impactParameter/(radius*theMinimumDistance))
164  / eccentricity;
165 // assert(std::abs(argument)<=1.);
166  const G4double thetaIn = Math::twoPi - std::acos(argument) - deltaTheta2;
167 
168  // Velocity angle at the entrance point
169  alpha = std::atan((1+std::cos(thetaIn))
170  / (std::sqrt(eccentricity*eccentricity-1.) - std::sin(thetaIn)));
171  // New impact parameter
172  newImpactParameter = radius * std::sin(thetaIn - alpha);
173  }
174 
175  // Modify the impact parameter of the particle
176  positionTransverse *= newImpactParameter/positionTransverse.mag();
177  const ThreeVector theNewPosition = p->getLongitudinalPosition() + positionTransverse;
178  p->setPosition(theNewPosition);
179 
180  // Determine the rotation axis for the incoming particle
181  const ThreeVector &momentum = p->getMomentum();
182  ThreeVector rotationAxis = momentum.vector(positionTransverse);
183  const G4double axisLength = rotationAxis.mag();
184  // Apply the rotation
185  if(axisLength>1E-20) {
186  rotationAxis /= axisLength;
187  p->rotate(alpha, rotationAxis);
188  }
189 
190  return true;
191  }
192 
193  G4double CoulombNonRelativistic::getCoulombRadius(ParticleSpecies const &p, Nucleus const * const n) const {
194  if(p.theType == Composite) {
195  const G4int Zp = p.theZ;
196  const G4int Ap = p.theA;
197  const G4int Zt = n->getZ();
198  const G4int At = n->getA();
199  G4double barr, radius = 0.;
200  if(Zp==1 && Ap==2) { // d
201  barr = 0.2565*Math::pow23((G4double)At)-0.78;
202  radius = PhysicalConstants::eSquared*Zp*Zt/barr - 2.5;
203  } else if(Zp==1 && Ap==3) { // t
204  barr = 0.5*(0.5009*Math::pow23((G4double)At)-1.16);
205  radius = PhysicalConstants::eSquared*Zt/barr - 0.5;
206  } else if(Zp==2) { // alpha, He3
207  barr = 0.5939*Math::pow23((G4double)At)-1.64;
208  radius = PhysicalConstants::eSquared*Zp*Zt/barr - 0.5;
209  } else if(Zp>2) {
210  // Coulomb radius from the Shen model
211  const G4double Ap13 = Math::pow13((G4double)Ap);
212  const G4double At13 = Math::pow13((G4double)At);
213  const G4double rp = 1.12*Ap13 - 0.94/Ap13;
214  const G4double rt = 1.12*At13 - 0.94/At13;
215  const G4double someRadius = rp+rt+3.2;
216  const G4double theShenBarrier = PhysicalConstants::eSquared*Zp*Zt/someRadius - rt*rp/(rt+rp);
217  radius = PhysicalConstants::eSquared*Zp*Zt/theShenBarrier;
218  }
219  if(radius<=0.) {
221  INCL_ERROR("Negative Coulomb radius! Using the sum of nuclear radii = " << radius << std::endl);
222  }
223  INCL_DEBUG("Coulomb radius for particle "
224  << ParticleTable::getShortName(p) << " in nucleus A=" << At <<
225  ", Z=" << Zt << ": " << radius << std::endl);
226  return radius;
227  } else
228  return n->getUniverseRadius();
229  }
230 
231 }
ParticleEntryAvatar * bringToSurface(Particle *const p, Nucleus *const n) const
Modify the momentum of the particle and position it on the surface of the nucleus.
Class for non-relativistic Coulomb distortion.
const G4double eSquared
Coulomb conversion factor [MeV*fm].
G4double dot(const ThreeVector &v) const
const char * p
Definition: xmltok.h:285
#define INCL_ERROR(x)
const G4INCL::ThreeVector & getMomentum() const
int G4int
Definition: G4Types.hh:78
ThreeVector vector(const ThreeVector &v) const
G4double pow23(G4double x)
G4double mag2() const
virtual void rotate(const G4double angle, const ThreeVector &axis)
Rotate the particle position and momentum.
G4double maxImpactParameter(ParticleSpecies const &p, const G4double kinE, Nucleus const *const n) const
Return the maximum impact parameter for Coulomb-distorted trajectories.
G4double getLargestNuclearRadius(const G4int A, const G4int Z)
bool G4bool
Definition: G4Types.hh:79
virtual void setPosition(const G4INCL::ThreeVector &position)
G4int getZ() const
Returns the charge number.
UnorderedVector< IAvatar * > IAvatarList
const G4double piOverTwo
const G4int n
ParticleEntryAvatar * bringToSurface(Particle *const p, Nucleus *const n) const
Position the particle on the surface of the nucleus.
ThreeVector getTransversePosition() const
Transverse component of the position w.r.t. the momentum.
NuclearDensity const * getDensity() const
Getter for theDensity.
const G4double twoPi
virtual G4INCL::ParticleSpecies getSpecies() const
Get the particle species.
G4double getUniverseRadius() const
Getter for theUniverseRadius.
G4double mag() const
double G4double
Definition: G4Types.hh:76
#define INCL_DEBUG(x)
G4double getTransmissionRadius(Particle const *const p) const
The radius used for calculating the transmission coefficient.
G4double pow13(G4double x)
std::string getShortName(const ParticleType t)
Get the short INCL name of the particle.
tuple c1
Definition: plottest35.py:14
ThreeVector getLongitudinalPosition() const
Longitudinal component of the position w.r.t. the momentum.
ParticleList::const_iterator ParticleIter
void distortOut(ParticleList const &pL, Nucleus const *const n) const
Modify the momenta of the outgoing particles.