Particules

DUNE press release highlighting the first tracks seen with the Dual Phase prototype. The DUNE group at APC participate in this.

Le progrès impressionnant réalisé récemment par le ProtoDUNE Dual Phase a été publié conjointement par le CERN et Fermilab.

 

Le temps de lire cet article, des milliards de neutrinos vont traverser votre corps sans que vous ne vous en rendiez compte! Les explications de Jaime Dawson en vidéo...

 

En juillet dernier, plusieurs de nos chercheurs se sont rendus à l'Université du Wisconsin-Madison pour la 36ème édition de la conférence internationale sur les rayons cosmiques ICRC.

A Dual-Phase detector for the long baseline neutrino experiment DUNE

 

The Deep Underground Neutrino Experiment (DUNE) is a long baseline neutrino experiment which aims to:

  • discover CP Violation in the leptonic sector
  • determine the neutrino Mass Ordering
  • precisely measure neutrino oscillation parameters
  • test the 3-flavour paradigm

This ambitious program also includes the search for Nucleon Decay and the astrophysical observations of Galactic Supernovae.

Study of atmospheric neutrinos with the deep-sea Cherenkov detector KM3NeT/ORCA

ORCA (Oscillation Research with Cosmics in the Abyss) is the low-energy branch of KM3NeT [1], the next-generation neutrino Cherenkov detector currently being built in the Mediterranean Sea with the aim of measuring the neutrino mass ordering and searching for high-energy cosmic neutrino sources. The ORCA detector will consist of a network of 115 vertical strings supporting optical modules, anchored on the seabed off the shore of Toulon, France (see figure right).

"Study of the response of the dual-phase liquid argon TPC, WA105 at CERN, and the application of the developed tools and results on the detector performance to the DUNE experiment at Fermilab for long-baseline neutrino physics and neutrino astrophysics''

RESEARCH THEMES: Neutrino oscillations, mass hierarchy, leptonic CP violation, nucleon decay, solar, atmospheric and supernova neutrinos

 

RESEARCH GROUP in the Laboratory: APC-Neutrino

 

SUBJECT AND NATURE OF PROPOSED WORK: Physics potential of the next generation neutrino observatory. The thesis will cover MC simulations and data analysis based on modern computing approaches like machine-learning as well as R&D work for the future detector.

 

Direct search for Dark Matter with the DarkSide experiment

The existence of gravitational effects which do not arise from normal matter is well established; their source is a deep mystery. One possibility motivated by considerations in elementary particle physics is that this “dark matter” consists of undiscovered elementary particles; Weakly Interacting Massive Particles (WIMPs) are one possibility. Evidence for such WIMPs may come from experiments at the Large Hadron Collider at CERN or from sensitive astronomical instruments detecting radiation produced by WIMP-WIMP annihilations in galaxy halos.

Pages

Subscribe to RSS - Particules