Particules

Event reconstruction in DarkSide-20k, a liquid argon TPC for direct dark matter search

Dark Matter is one of the main puzzles in fundamental physics and Weakly Interacting Massive Particles (WIMP) are among the best-motivated dark matter particle candidates. As of today, the most sensitive experimental technique to discover the WIMPs in the mass range from 2 GeV to 10 TeV is the dual phase Time Projection Chamber (TPC) filled with noble liquids. DarkSide-20k is the next generation of Liquid Argon (LAr) TPC, which will be running at LNGS (Italy) from 2026 with 50-ton active mass.

Studying supernovae at KM3NeT with low- and high-energy neutrinos

Core-collapse supernovae, the collapse of heavy stars under their own weight, are key drivers of the evolution of galaxies associated with multiple unsolved questions: Why do so many of them lead to cataclysmic explosions? Under what conditions do they create black holes? And could supernovae produce cosmic rays, these ultra-high energy nuclei which are observed on Earth but whose origin is unknown? Answers to these key questions could be provided by neutrinos.

Measuring the Neutrino Mass Ordering with KM3NeT/ORCA and JUNO

Neutrino physics is one of the most exciting topics in contemporary physics, leading to two Nobel prizes in the last 20 years for the detection of cosmic neutrinos and the discovery that neutrinos have mass. The massive nature of neutrinos is arguably the strongest indication of physics beyond the Standard Model of particle physics, opening a number of fundamental questions: What is the mechanism for neutrino mass generation? Are neutrinos responsible of the matter-antimatter imbalance in the universe? Can neutrinos tell us something about the unification of fundamental forces?

Sim-to-real adaptation in the KM3NeT/ORCA detector

Neutrino physics is one of the most exciting topics in contemporary physics, leading to two Nobel prizes in the last 20 years for the detection of cosmic neutrinos and the discovery that neutrinos have mass. The massive nature of neutrinos is arguably the strongest indication of physics beyond the Standard Model of particle physics, opening a number of fundamental questions: What is the mechanism for neutrino mass generation? Are neutrinos responsible of the matter-antimatter imbalance in the universe? Can neutrinos tell us something about the unification of fundamental forces?

Mesure de désintégrations hadroniques du boson de Higgs et calorimètre électromagnétique du Futur Circular Collider

The student will perform, with simulated event samples, a study of the sensitivity of the measurement of  Higgs boson decays to hadrons at the Futur Circular Collider, for the measurement of the Higgs Yukawa couplings to quarks of the second and third families.
In addition, the student will also have the possibility - if time allows - to work on the detailed simulation of the electromagnetic calorimetry section of one of the proposed detector designs for FCC.

Higgs Boson Physics at complementary Colliders, through the search for double-Higgs boson production in the bb final state for the measurement of the Higgs boson self-coupling at the LHC, and prospects for Higgs boson mass, ZH cross section and Higgs Se

The ATLAS experiment is installed at the Large Hadron Collider (LHC) at CERN near Geneva, Switzerland. Two data taking periods have already taking place:
a) Run 1 (2011–2012), at 7 and 8 TeV in the center of mass (c.o.m). In this Run ATLAS and CMS discovered a standard model-like Higgs boson at 125 GeV (H), mainly through its bosonic decay modes.
b) Run 2 (2015–2018), at an energy of 13 TeV in the c.o.m, with greater integrated luminosity which allowed the observation of the main fermionic interactions of the Higgs boson (H → tt,  H → bb, ttH production).

Search for double-Higgs boson production in the bb+2 photon final state for the measurement of the Higgs boson self-coupling and prospects for Higgs boson coupling studies to quarks and gluons at future colliders

The main subject of this thesis is the analysis of the Run3 data of the ATLAS experiment at the Large Hadron Collider at CERN for the search of the production of two Higgs bosons for the measurement of its self-coupling. 

Pages

Subscribe to RSS - Particules