SMICA  1.0
Public Member Functions | Public Attributes | List of all members
smica.model.ModelI Class Reference
Inheritance diagram for smica.model.ModelI:
smica.model.Model

Public Member Functions

def __init__
 
def get_dim
 
def get_theta
 
def set_theta
 
def cg_score
 
def cg_ifim
 
def covarianceS
 
def covariance
 
def mismatch_penalty
 
- Public Member Functions inherited from smica.model.Model
def add_comp
 
def get_comp_by_number
 
def get_comp_by_name
 
def __init__
 
def get_dim
 
def check_covmat_dim
 
def check_bin_dim
 
def dim
 
def get_theta
 
def set_theta
 
def printp
 
def fim
 
def covariance
 
def covariance4D
 
def mixmat
 
def powspec
 
def autopowspec
 
def noise
 
def set_mixmat
 
def set_powspec
 
def set_noise
 
def error_model
 
def mismatch
 
def close_form
 
def joint_diag
 
def ortho_subspace
 
def quasi_newton
 
def wiener
 
def winf
 
def mismatch_penalty
 
def __cg_mismatch__
 
def cg_mismatch
 
def cg_score
 
def cg_fim
 
def cg_ifim
 
def conjugate_gradient
 
def plot_mixmat
 
def plot_powspec
 
def plot_noise
 
def plot_power
 
def plot_em
 
def plot_mismatch
 
def full_fim
 
def error_model_full_fim
 

Public Attributes

 instru
 
- Public Attributes inherited from smica.model.Model
 ncomp
 
 nbin
 
 ndet
 

Additional Inherited Members

- Properties inherited from smica.model.Model
 dim = property(dim)
 

Detailed Description

A model which includes instrumental parameters.

This model includes a description of the instrument in addition to
its components. The covariance is the convolution of the source
components with the instrument plus a noise component.

Constructor & Destructor Documentation

def smica.model.ModelI.__init__ (   self,
  complist = None,
  instrument = None,
  ndet = 0,
  nbin = 0,
  ncomp = 0 
)
Set content and/or dimension of object.

Parameters
----------
complist : list of Component object instance (dimensions have to be compatible).
instrument: an Instrument object instance (dimensions have to be compatible).

Member Function Documentation

def smica.model.ModelI.cg_ifim (   self,
  theta,
  stats,
  nmodes 
)
Set model with new parameters and return inverse of Fisher
Information Matrix.

Parameters
----------
theta : array-like, shape (N, 1), where N is the number of free parameters.
stats : array-like, shape (ndet, ndet, nbin).
Second order statistics ie empirical covariance matrices of
the observations.
nmodes : array-like, shape (nbin,1).
Number of modes of each bin.

Returns
-------
array-like, shape (N, N), where N is the number of free parameters.
def smica.model.ModelI.cg_score (   self,
  theta,
  stats,
  nmodes 
)
Set model with new parameters and return score.

Parameters
----------
theta : array-like, shape (N, 1), where N is the number of free parameters.
stats : array-like, shape (ndet, ndet, nbin).
Second order statistics ie empirical covariance matrices of
the observations.
nmodes : array-like, shape (nbin,1).
Number of modes of each bin.

Returns
-------
array-like, shape (N, 1), where N is the number of free parameters.
def smica.model.ModelI.covariance (   self,
  bin = None 
)
Return the total covariance matrix(ces).

Parameters
----------
bin : bin number. If None, return all matrices in a three dimensional array.

Returns
-------
array, shape (ndet, ndet, nbin).
def smica.model.ModelI.covarianceS (   self,
  bin = None 
)
Return the source covariance matrix(ces).

Parameters
----------
bin : bin number. If None, return all matrices in a three dimensional array.

Returns
-------
array, shape (ndet, ndet, nbin).
def smica.model.ModelI.get_dim (   self)
Return the number of free parameters of the model.

This is the sum of all components + instrumental free parameters.
def smica.model.ModelI.get_theta (   self)
Return model parameters as a vector.

Returns
----------
array-like, shape (N, 1), where N is the number of free parameters.
def smica.model.ModelI.mismatch_penalty (   self)
Prior contribution to the mismatch.

Default is 0. Extend get_penalty function of one component to
set a prior contribution.

Returns
-------
scalar.
def smica.model.ModelI.set_theta (   self,
  theta,
  verbose = False 
)
Set new values for model parameters.

Parameters
----------
theta : array-like, shape (N, 1), where N is the number of free parameters.

The documentation for this class was generated from the following file: